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ARTICLES 
Hammer Juggling, Rotational Instability, 

and Eigenvalues 

Introduction 

CARL V. LU TZER 
Rochester Institute of Technology 

Rochester, NY 14623 
Cari.Lutzer®rit.edu 

Get a hammer. Seriously, get a hammer. As an experiment, hold the hammer in front 
of you with its head pointing up. Toss it upward (CAREFULLY!), end-over-end, and 
catch it after one revolution. The orientation of the hammer when you catch it will be 
the same as when you tossed it. 

As a second experiment, hold the hammer in front of you with its head pointing 
sideways, to the right. Toss the hammer upward, end-over-end, and catch it after one 
revolution. This time, the orientation changes-the head pointed to the right when you 
tossed it, but points to the left when you catch it! 

Experiment #1 Experiment #2 
Figure 1 Hammer juggling and unstable rotation 

Many people suggest that this strange 1 /2-twist in experiment #2 is due to the 
asymmetry of the hammer's mass distribution, but the same kind of thing will happen 
with a book, or wallet, or any object with three distinct dimensions. (Try it! Use a 
rubber-band to keep the wallet or book closed.) We don't  always see a half-twist (that 
will depend on the particular orientation of the object when you release it), but we 
almost always see a twist. Why? The answer is well known to the physics community, 
but is documented primarily in their parlance. The following exposition explains this 
phenomenon from a mathematician's point of view. The governing equations will be 
quickly derived, and the supporting linear algebra will be explored. 

We assume that the reader has basic knowledge of multivariate calculus, and is 
aware that e;q, = cos</> + i sin</>. We also assume that the reader is familiar with eigen­
values, eigenvectors, linear independence, and understands that a proper choice of ba­
sis will diagonalize a symmetric matrix M E �3x3. 

243 
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The basics 

In this section we begin with simple definitions of basic vocabulary, cite of the gov­
erning equations of motion, and then proceed with the salient calculations. Proofs of 
important assertions, and a derivation of the equations of motion are postponed un­
til later sections so that we can focus on answering the question of why the hammer 
performs a half-revolution in Experiment #2 but not in Experiment #1. 
Vocabulary 

Angular Velocity Suppose an object is revolving about some particular axis, much 
like a child's spinning top. The angular velocity of the object, denoted by w, is a 
vector that points in the direction of that axis. The magnitude of w is 2n y, where 
y 2:: 0 is the number of revolutions per second. As you might infer from the example 
of the spinning top, the angular velocity vector may change direction and length as 
time evolves. 

Newton's Second Law Most people cite Newton's Second Law as F = ma, which 
isn't quite right. Newton's Second Law says that force is the instantaneous change 
in momentum. In the case of linear force we write F = dpjdt where p = mv is the 
linear momentum of a mass m traveling with velocity v.  In the case of angular force 
and angular momentum we write r = dLjdt where r means torque and L denotes 
angular momentum (discussed in detail later). 

Euler's equation For reasons that will be explained later, the governing equation of 
motion is 

r = Mw + w x Mw, (I) 

where M E JR3x3 is a symmetric matrix and w denotes the derivative of w with re­
spect to time. (This "dot notation" is used throughout the rest of the article to denote 
differentiation with respect to time.) In later sections we'll see that (I), called Euler's 
equation, is just a fancy restatement of the fact that r = dLjdt. 

Calculations Because the matrix M is symmetric, its eigenvalues are all real, and 
eigenvectors associated with distinct eigenvalues are orthogonal. In fact, it happens 
that all the eigenvalues of M are positive! In the case of the hammer, they're also 
distinct so we label them in increasing order: 0 < }q < A.2 < A.3 . 

Physicists refer to M as the moment-of-inertia tensor, and they often use the letter 
I (for "inertia") to denote this matrix. (We use M in this exposition to avoid confu­
sion with the identity matrix.) The eigenvalues of Mare called the principal moments 
of inertia, and their corresponding unit-eigenvectors are called the principal axes of 
rotation. These unit-eigenvectors, which we'll denote by p" p2, and p3 respectively, 
point along "the axes of" the object in question. For example, pull a textbook off of 
the shelf. It has length, width, and height. The vector p1 points in the direction of the 
length, the vector p2 points in the direction of the width, and the vector p3 points in the 
direction of the height (see the figure, below). Notice that, listed in the order prescribed 
by our indexing, the dimensions of the book are decreasing : length > width > height. 
If you accepted the earlier invitation to try the experiment with another object (with 
three distinct dimensions), you found that the rotation was unstable when the axis of 
rotation was parallel to p2, which corresponds to the "middle" dimension. This will 
always be the case, as we'll see in a moment. 
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P2 

Vectors PI, p2, p3 form an orthonormal basis for IR3, so any angular velocity can be 
expressed as a linear combination of them: w = CXIPI + cx2P2 + cx3p3. (Recall that w 
may change with time, so the scalars ex I, cx2 and cx3 are functions of time.) Moreover, 
the matrix M is diagonal in the basis {PI, p2, p3}. 

So when the rotation is free from external torque and we use {PI, p2, p3} as our basis, 
equation ( 1 )  becomes 

A.Iai + (A.3 - A.2)cx2cx3 = 0 
>..2a2 +(A. I - A.3)cxicx3 = o 
A.3a3 + (>..2 - >..I)cxicx2 = o 

(2) 

(3) 

(4) 

Suppose the object in question (the hammer, in this case) were to rotate about the 
axis PI· Then cx2 (0) = 0 = cx3 (0) and it follows from equations (2)-( 4) that cx2 and cx3 stay zero. Of course, we see the same behavior whether we rotate about PI, p2 or p3. 
But rotating about one of the principal axes-exactly-is highly unlikely, even if we 
are meticulous in our efforts to make it happen. So what happens when the object in 
question rotates about an axis that is very close to one of the principal axes? 

Stable rotation Suppose w is initially very close to PI· Then cx2 (0) � cx3 (0) � 
e � 0, so the second summand on the right-hand side of (2) is order e2• 

A.Iai + (A.3 - A.2)cx3cx2 = 0. 
'-.-' 

0(s2) 
(5) 

The analogous terms in (3) and (4) are only order e, so a linear approximation of 
Euler's equation is 

>..2a2 + (A. I - A.3)cxicx3 = o 
A.3a3 + (A.2 - A.I)CXICX2 = 0 

(6) 

(7) 

(8) 

Equation (6) indicates that cxi is constant (or nearly so). This reduces the problem 
to a system of two equations in two unknowns. Solving (7) and (8) for a2 and a3, 
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respectively, gives us 

( �:) = 
(A1 -

0

A2)ot1 _ 

[ 

(A3 

�
O

� J)OIJ 

] ( 01
01

2
3) 

A3 

which we write as the 2 x 2 system i = Ax . The eigenvalues of A are 

±i 
(A3- AJ)(Az- AJ)oti 

AzA3 

(9) 

which we will denote by ±i¢.  Suppose the associated eigenvectors are a] , az E C2. 
Then, since these vectors are linearly independent, there are scalars c1, c2 E C 
such that c 1a 1 + c 2a 2 = (ot2(0), ot3(0))T. Note that c1 and c2 are "small" since 

lladl = llaz ll = le±i¢1 = 1 and otz(O) """0""" 013(0).Now by definingx(t) = c,ei<Pra, + 
c2e-i<P1a2 we have 

= C t ei<Pt ( i¢ )at + c2e-i<Pt ( -i¢  )a2 = c, ei<Pt Aa, + Cze-i<Pt Aa2 

= A (c,ei<Pra, + c2e-i¢ra2) = Ax (t) 

The function x(t) solves (9) with the correct initial data so, since that solution is 
unique, x(t) = (ot2(t), ot3(t))T. It follows that 012 and 013 not only start small but stay 
small. That is, w stays close to 011 Pt· 

In fact, w revolves around Pt as the system evolves. It's easy to follow through the 
same calculations to derive the same behavior when the axis of rotation is close to p3, 
but something very different happens when w is initially near p2• 

Unstable rotation If we begin with w very near to p2, 011 (0) """ 0 """ 013 (0), so a linear 
approximation of Euler's equation is 

A,a, + (A3- A2)ot2ot3 = 0 

A2a2 """ o 
A3a3 + (Az- AJ)OIJOI2 = 0. 

(10) 

(11) 

(12) 
Equation (II) indicates that 012 is constant (or nearly so). This reduces the problem to 
a system of two equations and two unknowns. 

[ 

(Az �
0

� 3) 012 ] 

( 01
01

� 
) ( ��) = 

(At -

0

A2)ot2 _, 

A3 

The coefficient matrix has eigenvalues 

± 
(A2 - A3)(At - Az)oti 

A1A3 

(13) 

which we denote by ±¢. Suppose the associated eigenvectors are a t, az E ffi.2. Then 
the solution to (13) is x = c1e<Pta1 + c2e-<P1a2 , where c1 and c2 are chosen to achieve 

x(O) = (011 (0), ot3(0))T. It's important to note that c2e-<P1a2 vanishes quickly but that 
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c1e<1>1a1 grows exponentially. That is, though a1 and a3 started small,  they don' t  stay 
that way, and it's exactly this instability that makes the hammer change its orientation. 

Rolling up our sleeves 

Now we undertake the task of supporting the assertions made about the matrix M (that 
it's symmetric and that all its eigenvalues are positive) and explaining Euler's equation. 
We begin by defining angular momentum and establishing its relationship to angular 
velocity. 

The relationship between L and w Suppose a rigid body rotates about the line 
through its center-of-gravity defined by the vector w. Taking the center-of-gravity as 
our origin, an atom at r 1 = (x 1, y 1, z1) has a linear velocity of v 1 = w x r 1 (see Figure 
2). The angular momentum of that atom is defined to be L 1 = r 1 x m 1 v 1, where m 1 is 
its mass .  That is, L 1 = m; (r; x (w x r;) ) .  Grinding through the cross products brings 
us to 

L; = 

[m,(yi+zi) 

-m1x1y1 
-m1x1z1 

-m;X;Y; 

m1(x2+z2) J 1 
-m1y1z1 

-m1x1z1 
-m,y,z, ] 

(:; ) 
m1(x; + y;) 

Figure 2 Angu l ar ve locity and a ngu l ar momentu m 

( 1 4) 

The angular momentum of the entire object is just the sum of the angular momenta of 
all its atoms. Summing ( 14) over all particles gives us 

[L1m1(Y7+z7) 
L = -2::1 m1x1y1 

-2::1m1x1z1 
This is the matrix M 

Defining M to be the coefficient matrix on the right-hand side, we can write L = M w. 
We remark that the symmetry of M is now apparent, but why are its eigenvalues always 
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positive and why does it play a role in Euler's equation? These questions are answered 
in the remaining sections .  

The eigenvalues of M We begin our investigation into the eigenvalues of M by writ­
ing 

(15) 

where Xj = � xj, ji and z are the corresponding vectors of scaled y and z coordi­
nates, and A is the matrix whose columns are A.1 = x, A.2 = ji, and A.3 = z. That is,  
M is a perturbation of the matrix (llxll2 + 115ill2 + llzll2 )/, which has a single eigen­
value whose algebraic multiplicity is three. The effect of this perturbation on the set 
of eigenvalues depends on the "size" of the perturbation. We measure the "size" of a 
linear function £ : JR3 ---+ JR3 with the operator norm: 

r def r ll .t..- 11* = max lkull , 
llull=l 

(16) 

where II vII = ,J1i"-:v is the standard norm JR3. (The fact that a maximum is always 
achieved follows from the Reine-Borel Theorem, which is usually taught in a course 
such as Real Analysis. Its !-dimensional version is known to calculus students as the 
Extreme Value Theorem: A continuous function on a closed interval achieves an ab­
solute maximum value. ) Before continuing, we suggest that the reader verify the fol­
lowing lemma. 

LEMMA 1 .  Suppose A, B : JR3 ---+ JR3 are linear operators. Then 

1. IIAxll ::::; IIAII*IIxll 
2. IIABII*::::; IIAII*IIBII* 
3. IIAII* = IIATII* 

Now let us suppose that u is a unit-eigenvector of M associated with the eigenvalue 
A.. Then 

from which it follows that AT Au = (llxll2 + II.YII2 + llzll2 - A.) u. That is, u is an 
eigenvector of AT A. The strategy of our proof is to use this fact to show that 

I (llxll2 + II.YII2 + llzll2 ) - A. I < llxll2 + II.YII2 + llzll2 • 
anchor value > 0 

distance from A to anchor value 

from which it follows that A. > 0. For example, if it was the case that llx 112 + II ji 112 + 
llzll2 = 5, showing 15- A. I < 5 would imply that A. > 0. 

Since !lull = 1 ,  we have 

l llxll2 + II.YII2 + llzll2 - A. I = II (llxll2 + II.YII2 + llzll2 - A.) u II 

= IIAT Auii :S IIAT All* 
::::; IIATII*IIAII* = IIATII; (17) 



VOL.  79, NO. 4, OCTO B E R  2 006 

so the proof rests on our estimate of I I  AT II*" For any unit vector, v, 

IIAT vii = Jcx . v)2 + (ji. v)2 + (Z. v)2 

:s Jllxll2 + 115ill2 + llzll2 -

249 

( 1 8) 

Note that equality could only occur in ( 1 8) if some unit vector v were parallel (or 
anti parallel) to all three vectors, x, y and z. But this could only happen if the object in 
question were )-dimensional ! Restricting ourselves to 3-dimensional objects, we can 
rewrite ( 1 8) as 

( 1 9) 

Since ( 1 9) is true for all unit vectors v, it's true when II AT vII achieves its maximum 
and, thus, II A Til*< Jllxll2 + II.YII2 + llzll2 .  Returning to ( 1 7) ,  we have 

from which it follows that A. E (0, 2(11xll2 + II.YII2 + llzll2 )]. That is, the eigenvalues of 
M are positive. 

Euler's equation (explained) The final piece of the puzzle is Euler's equation 
which, earlier, we asserted was just a fancy way of saying that torque changes angular 
momentum. When we first introduced the idea of torque we wrote 

dL r = - . dt (20) 

Equation (20) is correct from the point of view of an observer who is removed from the 
application of torque and the resulting change in motion-physicists say that such a 
person is in an inertial frame. But we're not dealing with an inertial frame because our 
coordinate system, {p1, p2 , p3 } ,  depends on M, which depends on the object which is 
rotating. As the object rotates, so does our basis ! 

How do we write (20) from our point of view, at the center of the rotating body, 
with a basis that's rotating? The key is to imagine what an observer in an inertial 
frame would see if, from our point of view in the rotating basis, we saw no change in 
the angular momentum. Because our frame of reference is spinning, our observation 
that L appears to be constant means that L is spinning about the axis of revolution at 
exactly the same speed as the basis. So an observer in an inertial frame would record 
the change in angular momentum as w x L (see Figure 3) .  Using the subscript of 0 to 
denote the inertial frame and the subscript r to denote the rotating frame, this thought 
experiement allows us to write (20) from our point of view in the rotating frame: 

r = (dL) = (dL) + w x Lr . dt 0 dt r '--,-' 
'-..-' is spinning 

(2 1 )  

our basis 

Finally, we use the fact that Lr = M w. Notice that M depends on the physical charac­
teristics of the object but not on time, so we can rewrite (2 1 )  as 

r=Mw+w x Mw, (22) 

which is Euler's equation. 
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ro 

Figure 3 Change of L in an inertial frame 

The last implicit supposition in our analysis was that the eigenvalues were distinct. 
This, at least, is not always true. What would happen if two of the eigenvalues were 
the same? What if all three were the same? What would that imply about the rotating 
object? 
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Beautiful theorems deserve elegant proofs. Among the attractive results in Euclidean 
geometry are the useful dual theorems of Menelaus and Ceva. Ceva's theorem states 
that three lines through the vertices of a triangle ABC , that intersect the sides of the 
triangle at P ,  Q, and R, are concurrent at a point 0 if and only if 

See Figure 1 .  This result is useful in proving the concurrence of many different sets of 
lines associated with a triangle. For example, the concurrence of the medians, angle 
bisectors and altitudes of Euclidean triangles can all easily be proved using Ceva's 
Theorem. 

A 

B 

Figure 1 Ceva's Theorem in the Euclidean plane: The product of the dashed lengths 
.................... ........ 

equals the product of the solid lengths if and only if AP, BQ, and CR are concurrent at 
a point 0. 

Upon examining the proofs of these theorems as presented in several textbooks (for 
example [14, sect. 4.8] or [2, pp. 53-55]), we discovered that, for such beautiful results, 
the proofs are overly complicated, involved, and not very satisfying. This did not seem 
befitting for results of this type. Then we came across the work of Grtinbaum and 
Shephard. In their article, Ceva, Menelaus and the Area Principle [10], they introduce 
a simple tool, called the Area Principle (which will be explained shortly), and use it 
to present deservingly elegant proofs of both Ceva's and Menelaus' Theorems. They 
go on to prove generalizations of these theorems to n-gons which are not necessarily 
convex or simple. 

Grtinbaum and Shephard's paper led us to begin thinking about how to generalize 
the Area Principle to spherical and hyperbolic geometry. Generalizing these theorems 
to include other geometries is not a new endeavor. In spherical and hyperbolic geome­
try, the analogs of the theorems of Ceva and Menelaus involve the product of ratios of 
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the sines or hyperbolic sines of lengths. Both of these results have been known for over 
1 00 years . On the sphere, Ceva's and Menelaus'  Theorems are discussed and proved 
using fairly complicated trigonometry in several late 1 9th century undergraduate level 
textbooks. (See [17, p. 1 38] or [15, chap. IX] . )  In the hyperbolic plane, these results 
can be found in early 20th century texts, for example [6, p. 1 05 ] .  More on these the­
orems and their generalizations can be found in [4] , [5] , [3] , [8] , and [9] . Once again 
these theorems are useful in proving the concurrence of the medians and other lines 
associated with hyperbolic and spherical triangles. 

Whi le a straightforward attempt to generalize the Area Principle to spherical and 
hyperbolic geometry fails, we have discovered a tool analogous to the Area Principle 
that works in spherical and hyperbolic geometry. In this paper, we prove the Volume 
Principle, which is valid for the Euclidean plane (embedded in ffi.3), the hyperbolic 
plane (embedded in M3, Minkowski space) and the two-dimensional sphere (embed­
ded in ffi.3). 

With appropriate modification, all the theorems from [10] , except for those general­
izations which require linearity, are thereby extended to these other geometries. They 
are proved using the Volume Principle in exactly the same manner as in Griinbaum 
and Shephard's  article [10] . While some of these results may not be new, this tech­
nique gives an elegant and unifying proof method for a set of deserving theorems in 
these three geometries . 

Revisiting the area principle 

The main tool we want to generalize is the following. 

THEOREM 1 .  (AREA PRINCIPLE) Let A1 BC and A2BC be two triangles in the 
Euclidean plane, where A 1 is distinct from A2• If P is an intersection point of Mz 
and Be, then 

[AlP]= [A1BC]. 
A2P A2BC 

where [-] represents the signed ratio of lengths or areas. 

It does not matter if the triangles are on the same side of the line containing the com­
mon side or not, for if needed we can just extend the line segment A 1 A2• See Figure 2. 
Clearly, the equality between the area and the length ratios will only be valid when the 
denominators are not zero and when Be and Mz are not parallel . We will assume 
throughout what follows that the intersections of all necessary lines exist, so that all 
relevant ratios are defined. 

The proof of the Area Principle can be seen in several elementary ways.  One is 
to observe that the ratio of the areas of the triangles is the same as the ratio of their 
heights, and then to use a pair of similar triangles . A different method involves the law 
of sines .  We choose this latter method of proof and quickly show the details because 
this method will generalize in other geometries. 

In Figure 2, applying the law of sines t� the triangles A 1 B P and A2B P and solving 
for the desired edge lengths, we have that 

lA PI_ I
A1BI sin ( L l ) 

1 
- .:....__SI-. n-(-L,-2.:....)- and IA2BI sin (L3) 

IA2PI = sin (L4) 
. ( 1 )  
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Figure 2 The Area Principle states that [���] = [��=�], where [-] represents the signed 

ratio of lengths or areas 

Since L2 and L4 are supplementary (or identical in the case that A1 and A2 are on the 
same side of Be), it follows that sin (L2) =sin (L4) . It now follows from (I) that 

I A1P I I AIBisin (Ll) 

I A2P I 
= 

I A2B I sin (L3)
. (2) 

To obtain the areas of the relevant triangles in these ratios, we multiply top and bottom 
by I B C l  to obtain 

I A1 P I I A1 B l  sin (Ll) IBC I = --------------
I A2P I I A2B I sin (L3)1BC I 

I AIBC I 
= 

I A2BC I 

(3) 

(4) 

As in [10], we will adopt a convention for expressing the ratios of lengths of line 
segments and the ratio of areas of triangles in the setting of the Euclidean plane. (The 
same ideas work for the hyperbolic plane and the sphere.) Choosing an orientation on 
a line I, the sign of the length P Q is positive if the orientation of the line segment 
agrees with the orientation of I, and is negative otherwise. Next, the signed ratio of 
two line segments on I, denoted [��].is the ratio of the signed length AB divided by 
the signed length CD. This ratio is independent of the orientation chosen on the line 
l. A similar convention is used for the ratio of the areas of triangles on an oriented 
surface. For two triangles, [��;.] is the ratio of the signed areas of the triangles. 

We will find it convenient to embed the Euclidean plane in JR3 as the plane z = 1 .  In 
this setting, we choose the sign of the area of a triangle to be positive if the determinant 
of the matrix whose columns are the coordinate vectors of the vertices of a triangle 
listed in order is positive. This allows us to extend the Area Principle as is given in 
Theorem 1 .  

Notice that if we switch the order of the vertices in either line segment, we must 
modify the equation involving the ratio of areas and lengths with a minus sign. For 
example, in the setting of Figure 2, [��] = -[1�!�]. If we permute the order of the 
vertices, the sign of the area ratio changes by the sign of the permutation. 

Generalizing the area principle 
We begin by choosing appropriate models for the geometries we are interested in, so 
that the common threads among them can easily be seen. A triangle ABC in any of 
these geometries is the union of three closed line segments, AB, BC and CA where A,  
B and C are non-collinear. The notation we adopt for the sides and angles of  a triangle 
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Geodesic 

'- Plane containing the origin 
X 

Figure 3 A plane through the origin intersecting the sphere, Euclidean plane, and hyper­
bolic plane 

is the usual one. A triangle with vertices at A ,  B, and C has angles A ,  B, and C and 
the length of the sides opposite them are a, b, and c. 

The two-dimensional sphere The model we choose for this surface is the set of 
points in �3 such that x2 + y2 + z2 = 1 .  Straight lines on the sphere are great circles 

and are the intersections of the sphere with planes in �3 that pass through the origin, 
as shown in Figure 3 .  More formally, these paths are geodesics because they are the 
fixed point set of a reflection over the plane that defines them, which is an isometry 
of the sphere with itself. Unlike Euclidean geometry, there are pairs of points on the 
sphere that do not determine a unique great circle. Two such points are those formed 
by the intersection of the sphere with any line that passes through the origin; these 
are called antipodal. Further, a given pair of points does not necessarily determine a 
unique line segment because we can start at one of them and reach the other by heading 
in either direction on a great circle connecting them. To help eliminate some of these 
choices, we will require that all line segments have length less than or equal to rr, half 
the length of a great circle. Hence, two non-antipodal points determine a unique line 
segment. Under these assumptions, the following statements can be proved: 

• By using an isometry of the sphere, we can move any triangle into a standard 
position. The coordinates of the vertices in standard position are A = (0, 0, 1 }, 
B = (sin(r) , 0, cos(r)} and C = (sin(s) cos(O) , sin(s) sin(O) , cos(s)} where 0 < 
r < rr, 0 < s < rr, and 0 < 0 < rr. See Figure 4. 

• For any spherical triangle ABC, there is a law of sines which states that 

sin(A) sin(B) sin(C) 
sin(a) 

= 
sin(b) 

= 
sin(c) 

For a complete introduction to spherical geometry and trigonometry, see [17] 
and [15]. 

The Euclidean plane The model we choose for this surface is the plane z = 1 in �3• 
Analogous to straight lines on the sphere, we can see that the straight lines (geodesics) 
of the Euclidean plane are also the intersections of the plane z = 1 with planes that 
pass through the origin. See Figure 3 .  In this situation, the following statements hold: 

• By using an isometry, we can move any triangle into a standard position. The co­
ordinates of the vertices in standard position are A = (0, 0, 1),  B = (r, 0, I} and 
C = (s cos(O) , s sin(O) , 1 } where 0 < r ,  0 < s, and 0 < 0 < rr. See Figure 4. · 
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z A= (0,0, 1) 

B = (sinh(r), 0, cosh(1·)) 
Figure 4 Triangles with side lengths r, s, and angle(} between them in standard position 
in spherical, Euclidean, and hyperbolic geometry 

• For any Euclidean triangle ABC, there is a law of sines which states that 

sin(A) sin(B) sin(C) 
-- = -- = --

a b c 

The hyperbolic plane The model that we choose for this surface is the upper sheet 
of the hyperboloid of two sheets, x2 + y2 - z2 

= - 1  with z > 0, in Minkowski three 
space M3• As a set of points, Minkowski three space can be regarded exactly as JR3• 
However, distances are not measured in the same way. For further details, see [16]. 

A remarkable feature of this model is that the geodesics are once again the intersec­
tions of the hyperboloid and planes which pass through the origin, as seen in Figure 3 .  
They are, just as  in the spherical case, fixed point sets of hyperbolic reflections (isome­
tries). In this situation, we can show that the following statements are true. 

• By using an isometry (see [16, p. 448] for details) we can move any triangle into 
a standard position. The coordinates of the vertices in standard position are A = 
(0, 0, 1), B = (sinh(r) , 0, cosh(r)) and C = (sinh(s) cos(t9) , sinh(s) sin(t9) , cosh(s)) 
where 0 < r, 0 < s, and 0 < e < rr. See Figure 4. 

• For any hyperbolic triangle ABC, there is a law of sines which states that 

sin(A) sin(B) sin(C) 
sinh(a) 

= 
sinh(b) 

= 
sinh(c) 

· 

This model is over 1 00 years old and is isometric to the more familiar Poincare disk 
model, as well as the upper half-plane model of the hyperbolic plane. For more details 
about the hyperboloid model see [16]. 
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.......... 
Figure 5 Is A1 A2 broken apart by BC in any special way? 

Equations ( 1 )  and (2),  we can still use the appropriate law of sines on triangles A 1 B P 
and A2B P to solve for the sines or hyperbolic sines of the necessary lengths and then 
divide the expressions to obtain 

or 
sinh(A1P) sinh(A1B) sin(Ll) 
sinh(A2P) 

-
sinh(A2B) sin(L3) · 

(5) 

Following the proof of the Area Principle and examining the pattern of sines and 
hyperbolic sines in the law of sines for each geometry, we should multiply by the sine 
or hyperbolic sine of BC and obtain 

sin(A1P) sin(A1 B) sin(Ll) sin(BC) 
= 

sin(A2P) sin(A2B) sin(L3) sin(BC) 
or (6) 

sinh(A1P) sinh(A 1 B) sin(L 1 )  sinh(BC) 
= 

sinh(A2P) sinh(A2B) sin(L3) sinh(BC) 

The crucial question becomes, what is the geometric interpretation of the quantity 
in the numerator and denominator of the right-hand sides of these equations? To help 
investigate this, consider the matrix, MAsc. whose columns are the coordinate vectors 
of a triangle ABC. By using an isometry of spherical, hyperbolic, or Euclidean geom­
etry, we may assume that the triangle is in standard position. Isometries in all of these 
geometries have determinant one, so the determinant of MAsc doesn't  depend on the 
location of the triangle in its model. Notice that 

det (MA8c) = sin(r) sin(O) sin(s) or det (MAsc) = sinh(r) sin(O) sinh(s) . 

The volume interpretation of the determinant implies that the right-hand side of the 
equations in (6) are the ratios of the Euclidean volumes of two tetrahedrons with the 
vertices 0 = (0, 0, 0), A;, B and C (i = 1 , 2). (The connection between the volume 
and the product sin(r) sin(O) sin(s) in the spherical case is not new. See [7, p. 265].) 
Hence, we have that 

or (7) 

Observe that in our model of Euclidean geometry ({ (x, y, l)lx E IR, y E IR} c IR3), the 
volume of the tetrahedron 0 A; BC is numerically one-third the area of triangle A; BC. 
Thus, the Area Principle can be stated in a manner that is analogous to the expressions 
in (7). These three principles are illustrated in Figure 6. 
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B 

0 0 

Figure 6 The Volume Principle in spherical, Euclidean and hyperbolic geometry states 
that [gsin(A, P)

J 
[OA1 B� 

gsin(A2 P) 
= 

OA2 BCJ 
These results, in all three geometries, are begging to be unified. One way to do so 

is to use the generalized sine function, gsin(x) ,  which is defined by the power series 

Kx3 Kzxs K3x7 
gsin(x) = x - 3! + ----s! - 7! + · · · , 

where K is a parameter which we will regard as the constant Gaussian curvature 
of a complete simply connected two-dimensional space. For our purposes, we are 
mainly concerned with the sphere (where K = 1 and gsin(x) = sin(x)),  the Euclidean 
plane (where K = 0 and gsin(x) = x) and the hyperbolic plane (where K = - 1  and 
gsin(x) = sinh(x)),  but these results have obvious generalizations to the other constant 
curvature spaces corresponding to all the other values of K. 

Care must be taken when making the arguments outlined in Equations (5)-(7) in 
the spherical case for two reasons. Unlike in the Euclidean and hyperbolic cases, if A 1 
and Az are on the same side of 1ft, the point P is not well defined. However, after 
examining either choice of intersection, and using the fact that the sines of supple­
mentary angles are equal, it is not too difficult to see that this choice doesn't matter. 
In further contrast to the other geometries, the points A 1 and A2 may be antipodal. In 
this case, any choice of the line segment connecting them will work. Just observe that 
A 1 P + P A2 = rr and that volumes of the tetrahedrons are equal. 

After introducing the signed length and volume in exactly the same way as in the 
Area Principle, we have the following. 

THEOREM 2. (VOLUME PRINCIPLE) Let A1 BC and A2BC be two triangles in 

an appropriate model of a complete simply connected space of constant Gaussian 

curvature, K, where A 1 is distinct from A2• If P is an intersection point of � and 

BC, then 

[gsin(AIP)

J 
= 
[OA1BC]

· gsin(AzP) OAzBC 

In the case of K > 0, either intersection point of � n 1ft may be chosen and if A 1 
and A2 are antipodal then any line segment that connects them may be chosen. 

Ceva and Menelaus type theorems in spherical 
and hyperbolic geometries 
The Volume Principle can be used in exactly the same way that Grtinbaum and Shep­
hard used the Area Principle to prove their results. Hence, we expect that most of their 
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results, with appropriate modification, are true in spherical and hyperbolic geometry. 
Following Grtinbaum and Shephard's work in [10], by a polygon P = [V1, • • •  , Vn] 
we mean a cyclic sequence of n :=::: 3 points V; (called vertices) in a space, together 
with the closed line segments V; V;+1 (called edges) with length V; Vi+I· Each edge is 
contained in a line, V; V;:1, which we will refer to as a side of the polygon. We assume 
that a polygon is oriented, adjacent vertices are distinct (and in the spherical case, not 
antipodal) and that V;, Vi+1 and V;+2 are not collinear for all i. In what follows, all 
subscripts will be assumed to be reduced modulo n so that I ::=:: i ::=:: n. 

THEOREM 3 .  {CEVA'S THEOREM FOR n-GONS) Let P = [V1, • • •  , Vn] be an ar­
bitrary n-gon in a complete simply connected space of constant Gaussian curvature, 
C a given point (not on any side of P ), and k a positive integer such that I ::=:: k ::=:: �· 
For i= I ,  ... , n, let W; be an intersection point of the line CV; and a line V;_k V;:k· 
Then, 

nn 
[

gsin(V;_k W;)
J =I. 

i=I gsin(W; V;+k) 

""s 
Figure 7 Ceva's Theorem for a 5-gon in the Euclidean plane with k = 2 states that 

[v4w,J[
VsW2J[v, W3][v2w4][V3Ws] = l. 

w, V3 W2 V4 W3 Vs W4 v, Ws V2 
That is, the product of the dashed lengths equals the product of the solid lengths. 

(8) 

The case of n = 3 and k = I in the Euclidean plane is the well-known Ceva's 
Theorem. In the Euclidean setting, this result appears in [10] and elsewhere. The proof 
of this theorem is almost identical to Grtinbaum and Shephard's proof in the Euclidean 
plane. 

Proof Observe that applying the Volume Principle to the triangles with base C V; 
we obtain, fori = I , ... n ,  

[
gsin(V;-k W;)

J = [
OCV; Vi-k

] · 
gsin(W; V;+k) OCVi+k V; 

Substituting these terms in the left hand side of (8), we obtain a product of n terms 
each of which is a quotient of the volumes of certain tetrahedrons. These cancel to 
yield the value I as required. • 

In a similar vein, Menelaus' Theorem for n-gons becomes the following. 
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THEOREM 4. (MENELAUS' THEOREMS FOR n-GONS) Let P = [V,, ... , VnJ be 
an arbitrary n-gon in a complete simply connected space of constant Gaussian curva­

ture, K, and suppose that, for i = I, ... , n, a line, I, cuts the side V; V;)1 at W; and 
does not pass through any vertex. Then 

nn [ gsin( V; W;) ] 
. = (- It . 

i=l gsm(W; Vi+1) 

Figure 8 Menelaus' Theorem for a 5-gon on the sphere states that [sin(Vl W1 )] [sin(V2 W2 )] [sin(V3 W3)] [sin(V4 W4)] [sin(Vs Ws)] 
= 

-l. 

sin(Wl V2 ) sin(W2 V3) sin(W3 V4) sin(W4 Vs) sin(Ws V1 ) 

(9) 

That is, the product of the sines of the dashed lengths equals the opposite of the product 
of the sines of the solid lengths. 

Proof Observe that applying the Volume Principle to the triangles with base W1 W2 
we obtain, fori = I , ... n ,  

[ gsin(V; W;) 
J 

[ OV; W1 W2 
J gsin(W; V;+l) 

= -

O V;+, W, W2 
. 

The minus sign comes from the fact that we have switched the order of the vertices 
in the denominator on the left hand side of the usual Volume Principle. Substituting 
these terms in the left hand side of (9), we obtain a product of n terms, each of which 
is a quotient of the volumes of certain tetrahedrons. These cancel to yield the value 
required. • 

Grtinbaum and Shephard's result on the intersections of a polygon with its diag­
onals (i.e. line segments connecting distinct non-adjacent vertices), which they call 
selftransversality, becomes the following. 

THEOREM 5 .  (SELFTRANSVERSALITY) Let j, r and s be integers distinct (mod n) 
and let W; be an intersection point of a line connecting V; and Vi+j of the polygon 
P = [V1, . • .  , Vnl with a line connecting V;+r and V;+s· Then a necessary and suffi­
cient condition for 

. = (- It 
nn [ gsin(V; W;) 

J i=l gsm(W; Vi+j) 

is that either one of the following is true: 

Case 1 n = 2m is even, j = m mod n and s = r + m mod n 

Case 2 n is arbitrary and either one of the following is true: 

( 1 0) 
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Figure 9 The selftransversality theorem for a 5-gon in the hyperbolic plane with j = 2, 
r = 3 and s = 4 states that [sinh(V, W, )J [sinh(V2 W2 )] [sinh(V3 W3)] [sinh(V4 W4)] [sinh(Vs Ws)J = -l. 

sinh(W, V3) sinh(W2 V4) sinh(W3 Vs) sinh(W4 v,) sinh(Ws V2 ) 

The polygon is shown in solid lines and the dashed lines are the lines in which all the 
lengths in the product occur. 

Sub-case a s = 2r mod n and j = 3r mod n 
Sub-case b r = 2s mod n and j = 3s mod n 

Proof Using the Volume Principle for triangles with base V;+r V;+s and apices V; 
and Vi+ j, we obtain 

[ gsin( V; W;) 
J 

[ OV; V;+r V;+s 
J gsin(W; V;+j) 

=

- OVi+j V;+r V;+s . 

Substituting these terms in the left hand side of ( 1 0), we obtain a product of n terms 
each of which is a quotient of the volumes of certain tetrahedrons. Then we have to 
determine when the terms will cancel. The analysis is exactly the same as in [10] so 
we will not repeat it here. • 

Hoehn-type theorems in spherical and hyperbolic geometries 
The other theorem that Grtinbaum and Shephard generalize to n-gons is Hoehn's theo­
rem. Hoehn originally proved his theorem about the product of ratios of side lengths in 
a convex Euclidean pentagram (see [13]) using several applications of Menelaus' theo­
rem. In their proof of the generalization of this result, Grtinbaum and Shephard use the 
Area Principle and the linearity of the gsin function for K = 0. Clearly the generalized 
sine function is not linear for any other values of K and their argument does not directly 
generalize for use with the Volume Principle. However, as we have proved Menelaus' 
Theorem in these other geometries, Hoehn's original proof still works. Thus we can 
prove that Hoehn's theorem, where the length of line segments are replaced with the 
sine or hyperbolic sine of the line segments, holds for pentagrams in spherical and 
hyperbolic geometry. See Figure I 0. 

However, we were unable to find a way around the use of linearity to prove the 
generalizations of Hoehn's theorems stated in [10] using the Volume Principle. Us­
ing the program Spherical Easel [1], we were able to numerically verify many cases 
of the generalizations of Hoehn's theorem on the sphere. This evidence supports our 
conjecture that the generalizations of Hoehn's theorems are true in both spherical and 
hyperbolic geometry. In addition, we continue to investigate the obvious generaliza­
tion of the Volume Principle to higher dimensions in an attempt to move all of the 
theorems from [11] and [12] into constant curvature spaces of higher dimension. 
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Figure 1 0  Hoehn's Theorem on the sphere states that [sin(V, w, )] [sin(V2 W2 )] [sin(V3 W3)] [sin(V4 W4)] [sin(Vs Ws)J = 1 . 
sin(W1 V2 ) sin(W2 V3) sin(W3 V4) sin(W4 Vs) sin(Ws V, ) 

261 

That is, the product of the sines of the solid lengths is the same as the product of the sines 
of the dashed lengths. Also it states that [sin(V1 W2 )J [sin(V2 W3)J [sin(V3 W4)J [sin(V4 Ws)J [sin(Vs w, )] = l .  

sin(W, V3) sin(W2 V4) sin(W3 Vs) sin(W4 V, ) sin(Ws V2 ) 
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Matrices with very few nonzero entries cannot have large rank. On the other hand 
matrices without any zero entries can have rank as low as 1 .  These simple observations 
lead us to our main question. For matrices over finite fields, what is the relationship 
between the rank of a matrix and the number of nonzero entries in the matrix? This 
question motivated a summer research project collaboration among the authors (two 
undergraduate students and their adviser) , and although the question seems natural, we 
were unable to find any previously published work dealing with it. 

We call the number of nonzero entries of a matrix A the weight of A and denote it 
by wt A. For matrices over finite fields, the weight of A - B is a natural way to define 
the distance between A and B .  In coding theory the distance between vectors defined 
in this way is called the Hamming distance, named after Richard Hamming, a pioneer 
in the field of error correcting codes . The rank of A - B ,  denoted rk (A - B ) ,  defines 
a different distance between the matrices A and B .  Thus wt A and rk A give two ways 
to measure the distance from A to the origin and our fundamental question is about the 
relationship between them. 

The background needed for this paper comes from the undergraduate courses in 
linear algebra, abstract algebra, and probability. We use the fundamental ideas of linear 
algebra over finite fields . For each prime power q we let F q denote the unique field with 
q elements .  There is no problem, however, in reading the rest of the paper with only 
the prime fields F P (or even F 2) in mind. We use the basic concepts and results of 
probability up through the central limit theorem. 

Having restricted our investigation to matrices over finite fields, we restate the fun­
damental question in this way : Over F q how many m x n matrices of rank k and weight 
w are there? In probabilistic terms, we are asking for the distribution of the weight for 
matrices of rank k .  We do not have the complete answer to this question, and it seems 
we are far from the complete answer, so there is plenty of work left to be done. The 
main results we offer are the average value of the weight for matrices of fixed rank and 
the complete description of the weight distribution for rank 1 matrices. 

Counting matr ices 

For matrices of fixed size, the zero matrix is the only matrix of weight 0 and the only 
matrix of rank 0. Also, any matrix of weight 1 has rank 1 ,  and a matrix of rank k has 
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weight at  least k .  I t  is possible to  count the matrices of very small rank and weight. For 
a matrix of rank 1 and weight 1 we choose one of the mn entries in which to place one 
of the q - 1 nonzero elements of the field. That gives us mn (q - 1 )  matrices of rank 
1 and weight 1 . We leave two more results as exercises for the reader. 

• The number of rank 1 and weight 2 is 

1 
2mn (m + n - 2) (q - 1 )2 • 

• The number of rank 2 and weight 2 is 

1 2 2mn (m - 1 ) (n - 1 ) (q - 1 )  . 

The number of matrices of weight w (regardless of rank) is easy to count. There are 
w locations to select and in each location there are q - 1 nonzero elements to choose. 
Therefore, the number of m x n matrices of weight w is 

The probability that a matrix has weight w ,  assuming that each matrix is equally prob­
able, is then 

_l_ (mn) (q _ l )w = (mn) ( 1 _ 1 jq ) w ( l jq)mn-w , 
qmn W W 

showing us that the weight follows is a binomial distribution with parameters mn and 
1 - 1 jq . 

Next we count the number of m x n matrices of rank k without regard to weight. 
Although this is a more difficult problem than counting according to weight, it is an 
old result with the first derivation of the formula due to Landsberg in 1 893 [5] . We 
break the problem into two parts by first counting the matrices with a fixed column 
space of dimension k and then counting the subspaces of dimension k. The product of 
these two numbers is the number of m x n matrices of rank k. 

Let V be a fixed k-dimensional subspace of the m-dimensional space F; . The m x n 
matrices whose column space is V are bijective with the linear transformations from 
F� onto V ,  which are bijective with the k x n matrices of rank k .  

FORMULA 1 .  The number of k x n matrices of rank k is 

n (qn - qi ) = (qn - l ) (qn - q) . . .  (qn - qk- 1 ) . 
O:::; i :::;k- 1  

Proof In  order for a k x n matrix to  have rank k the rows must be  linearly inde­
pendent. (For a slick proof that row rank equals column rank see the recent note by 
Wardlaw in this magazine [6] . )  Now the first row can be any nonzero vector with n 
entries, and there are qn - 1 such vectors . The second row must be independent of the 
first row. That means it cannot be any of the q scalar multiples of that row, but any 
other row vector is allowed. There are qn - q vectors to choose from. The third row 
can be any vector not in the span of the first two rows. There are q2 linear combinations 
of the first two rows, and so there are qn - q2 possible vectors for row 3. We continue 
in this way with row i + 1 not allowed to be any of the q; linear combinations of the 
first i rows. 

-

• 
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FoRMULA 2 .  The number of k -dimensional sub spaces of an m -dimensional vector 
space over Fq is 

no<i<k- 1  (qm - qi ) 

no:si:sk- 1 (qk - qi ) . 

Proof. To count the number of k-dimensional subspaces of a vector space of di­
mension m, we count the number of bases of all such subspaces and then divide by the 
number of bases that each subspace has . A basis is an ordered list of k linearly indepen­
dent vectors lying in F; . Putting them into a matrix as the rows, we get a matrix of rank 
k. From Formula l (with n replaced by m) we see that there are Oo<i<k- i (qm - q ; ) 
bases . The number of bases of a k-dimensional space is just the number of k x k ma­
trices of rank k. Again, we use Formula l (with n replaced by k) to see that there are 
no:si :sk- 1 (qk - q i ) bases of a particular subspace. • 

There is a well-developed analogy in the world of combinatorics between the sub­
sets of a finite set and the subspaces of a finite dimensional vector space over a finite 
field. The number of k-dimensional subspaces of an m-dimensional vector space is 
analogous to the number of subsets of size k in a set of size m ,  which is given by the 
binomial coefficient (7) . So, we let 

denote the number of such subspaces, as given in Formula 2. This number is often 
called a Gaussian binomial coefficient. Although the full development of the subset­
subspace analogy is not necessary for us, we recommend Kung's introductory survey 
[4] and Cohn's  recent discussion of the Gaussian binomial coefficients [2] . 

Formulas 1 and 2 give the two factors we need for the number of m x n matrices of 
rank k .  As one should expect the formula is symmetric in m and n .  

FORMULA 3 .  The number ofm x n matrices of rank k is 

The average weight of rank k matr i ces 

As we have mentioned, the weight of a matrix A is the Hamming distance between A 
and the zero matrix, and so we expect that in some way increasing weight is correlated 
with increasing rank. In this section, we determine the average weight of the set of 
matrices of a fixed rank in terms of the parameters q , m, n, and k. Indeed we find that 
the average weight grows with k when the other parameters are held fixed. 

We consider the weight as a random variable W, which is the sum L;,j WiJ ,  where 
W;j is the weight of the i ,  j entry, meaning that WiJ = 1 for a matrix whose i ,  j entry 
is nonzero and WiJ = 0 when the entry is 0. Then the average or expected value of W 
is the sum of the expected values of the random variables W;j . The expected value of 
W;j is simply the probability that the i ,  j entry is nonzero. It is this probability that we 
will compute. An important observation is that this probability is the same for all i and 
j . In other words, the W;j are identically distributed. 

THEOREM 1 .  For m x n matrices of rank k, the probability that the i, j entry is 
nonzero is the same for all i and j . 
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Proof. For a fixed row index i and column index j there is a bijection on the space 
of m x n matrices defined by switching row 1 with row i and switching column 1 with 
column j .  This bijection preserves the rank and weight, and so it defines a bijective 
correspondence between the subset of matrices of rank k with nonzero 1 , 1  entry and 
the subset of matrices of rank k with nonzero i, j entry. • 

With this result we know that the expected value of W is mn times the average 
weight of the 1 , 1  entry, so that we can focus our attention on the upper left entry. Our 
analysis depends on what is called the reduced row echelon form. Recall that a matrix 
is in reduced row echelon form if all the nonzero rows are above all the zero rows,  
if the leftmost nonzero entry of a nonzero row is 1 ,  and if such an entry is the only 
nonzero one in its column. 

The reduced row echelon forms are actually a system of representatives of the row 
equivalence classes, where two matrices are row equivalent if a sequence of elemen­
tary row operations changes one into the other. It is also the case that A and B are row 
equivalent if and only if they have identical row spaces.  

For an m x n matrix A of rank k,  the reduced row echelon form of A has k nonzero 
rows. Let R be the k x n matrix consisting of those rows .  Since the rows of R form a 
basis of the row space of A,  each row of A is a linear combination of the rows of R .  
That means there is a unique m x k matrix C such that A = C R .  Note that the rank of 
C must also be k .  

Using the factorization A = C R we can express the set of  rank k matrices as  the 
Cartesian product of the set of m x k matrices of rank k with the set of k x n re­
duced row echelon matrices of rank k. This means that A can be selected randomly 
by independently choosing the factors C and R. Now the 1 , 1  entry of A is given by 
au = cu ru + c 1 2r2 1  + · · · + clkrk l . Since R is in reduced row echelon form, ru is 0 
or 1 and the rest of the entries in the first column, r2 1 ,  r3 1 ,  • • •  , rk 1 ,  are all 0. Therefore, 
au = c u ru , and so the probability that the 1 , 1  entry is nonzero is 

P(au =/= 0) = P(cu =I= O)P(ru =I= 0) . 

Now C is m x k and has rank k .  Thus, the first column of C is any nonzero vector 
of length m ,  of which there are qm - 1 .  There are qm- 1 - 1 of those vectors that have 
a zero in the top entry, and so there are qm - qm- 1 that have a nonzero top entry. Then 

qm _ qm- 1 
P(cu =I= 0) = ----

qm - 1  

The choice of the reduced matrix R is the same as the choice of row space of A .  If 
any of the vectors in the row space has a nonzero first entry, then the first column 
cannot be the zero column and then r 1 1 is not 0. In order that r1 1 = 0 the row space 
of A must be entirely within the n - 1 dimensional subspace of vectors of the form 
(0, x2 , x3 , . • •  , Xn ) . The probability of that occurring is the ratio of the number of k­
dimensional subspaces of a space of dimension n - 1 to the number of k-dimensional 
subspaces of a space of dimension n :  (n�\ 

P(r" = 0) = (�)q . 
Therefore, the complementary probability gives 
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Using Formula 2 we simplify this to get 

Putting these results together gives us 

P(a J I i= O) = (qm _ qm- 1 ) (qn _ qn-k ) . 
qm - 1 qn - 1 

As a probability this is more easily analyzed in the following form: 

When m ,  n ,  and k are large, this probability is close to 1 - 1 I q , which is the probability 
that an entry is nonzero with no condition on the rank. One case of interest is that 
of invertible matrices. For n x n invertible matrices we have k = m = n ,  and so the 
probability that an entry is nonzero simplifies to 

1 - l lq 
1 - 1 1qn 

We see that it is slightly more likely that an invertible matrix has nonzero entries than 
an arbitrary matrix. 

Having determined the probability that the 1 ,  1 entry is nonzero and hence that the 
probability that the i ,  j entry is nonzero, we have proved the following theorem. 

THEOREM 2 .  The average weight of an m x n matrix of rank k over the field of 
order q is 

We also see that with m and n fixed the average weight increases as k increases. It 
is this formula that best expresses the intuitive idea that increasing rank is correlated 
with increasing weight. FIGURE 1 shows a plot of the average weight vs. the rank for 
matrices of size 1 0 x 1 0  over the field F 2 . 

The weight of rank 1 matrices 

We can analyze the weight distribution more completely for matrices of rank 1 .  From 
Theorem 2 with k = I we see that the average weight of a rank 1 matrix is 

( 1 - I lq)2 
mn --------��------

( 1 - I lqm ) ( 1 - I lqn ) 

For m and n large this average is just about mn ( 1 - 1 I q )2 , whereas the average weight 
for all m x n matrices is mn ( l  - 1 1q ) , and s o  rank 1 matrices tend to have a lot more 
zero entries than the average matrix. For q = 2 this effect is the most pronounced. An 
average of one fourth of the entries are 1 in a large rank 1 matrix over F 2 , while an 
average of half the entries are 1 for all matrices . 

In the factorization A = C R,  where rk A = I ,  C is a nonzero column vector of 
length m and R is a nonzero row vector of length n whose leading nonzero entry is I .  
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Figure 1 Average weight p lotted aga i n st ran k  for 1 0 x 1 0 matrices over F2 
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The entries o f  A are given b y  aij = c; ri , and s o  the weight o f  A i s  the product o f  the 
weights of C and R. The weight of C has probability distribution given by 

(;) (q - 1 )1I 
P(wt C = p, )  = , (qm - 1 ) 

because there are qm - 1 nonzero column vectors of length m ,  and there are 

(:) (q - 1 )1I 
vectors of  weight p, .  This is the distribution of  a binomial random variable (with pa­
rameters m and 1 - 1 / q) conditioned on being positive. Likewise for R the weight 
distribution is given by 

P(wt R = v) = 
(:) (q - l ) v (qn - 1 ) 

To select a random R,  choose a random nonzero vector of length n and then scale it to 
make the leading nonzero entry 1 .  The scaling does not change the weight. 

Immediately we see that there is a restriction on the possible weight of a matrix of 
rank 1 .  For example, the weight of a 3 x 4 matrix of rank 1 cannot be 5, 7 ,  1 0, or 1 1  
because those numbers are not products p, v with 1 ::::: p, ::::: 3 and 1 ::::: v ::::: 4. All other 
weights between 1 and 1 2 are possible. 

The weight of rank 1 matrices is the product of these two binomial random vari­
ables ,  each conditioned to be positive. 

P(wt A = w) = L P(wt C = p,)P(wt R = v)  
J.J. V =w (m) (n) (q - 1 )JI+v 

=
II�"' J.L V (qm - 1 ) (qn - 1 ) 
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Because not all weights between 1 and mn occur for rank 1 matrices, plots of actual 
probability densities show spikes and gaps. However, the plots of cumulative distribu­
tions are smoother and lead us to expect a limiting normal distribution as the size of 
the matrices goes to infinity. FIGURES 1 and 2 show this behavior quite well. (In order 
to plot the approximating normal distribution, we numerically computed the standard 
deviation of the weight distribution for the given m ,  n ,  and q .) 

0.05 .-----.----.------.---..... ---.-------r------, 

0.045 

0.04 

0.035 

0.03 

0.025 

0.02 

O.D1 5 

0.01 

Figure 2 Density for the weight of ran k  1 matri ces, m = n = 2 5 ,  q = 2 

THEOREM 3 .  As m or n goes to infinity, the weight distribution of rank 1 matrices 
approaches a normal distribution. 

Proof The weight random variable for rank 1 matrices of size m x n is the product 
of independent binomial random variables conditioned on being positive. Define W = 

X Y,  where X = .L 1 si sm X; , Y = .L 1 sj sn Yj , and X; and Yj are independent Bernoulli 
random variables with probability 1 j q of being 0. Then W is the sum of m independent 
identically distributed random variables X; Y .  Conditioning W on W > 0 is the weight 
of rank 1 matrices . By the central limit theorem the distribution of W converges, as 
m --+ oo, to a normal distribution after suitable scaling. Now conditioning on W being 
positive does not change this result because the probability that W > 0 is 1 - q-m , 
which goes to 1 as m --+ oo .  • 

Therefore, when m and n are large we can use a normal distribution of mean E(W) 
and variance var ( W) to  approximate the weight distribution for rank 1 matrices. Note 
that this variance is not exactly the variance of the weight of rank 1 matrices because 
we have not conditioned on W being positive. However, the exact computation of that 
variance is rather complicated, and because of the theorem, the exact variance is not 
more informative than the variance of the unconditioned random variable W .  

How fast does the variance grow a s  m and n g o  to infinity? For simplicity w e  let 
m = n ,  but the computation in the general case is similar. The variance of W is given 
by 
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Figure 3 C u m u l ative frequency d i str ibut ion for the weight of ran k  1 matrices, m = n = 

2 5 ,  q = 2 .  The smooth cu rve is the normal  d i stri but ion with the same mean (� mn/4 = 

1 5 6 . 2 5 )  and standard dev iat ion (� 44.63 ) .  

We need E ( X )  and E(X2) ,  which are given by 

E(X) = n ( l  - 1 /q )  

E(X2) = n( l  - 1 /q)  + n (n - 1 ) ( 1 - 1 /q)2 . 

Because X and Y are independent binomial random variables with the same distribu­
tion, it follows that 

E(W) = E(XY)  = E(X)E(Y) = E(X)2 

E(W2) = E(X2 Y2) = E(X2)E(Y2) = E(X2)2 . 

After taking care of the algebra we arrive at 

var ( W) = - 1 - - n2 + - 1 - - n3 . 
1 ( 1 ) 2 2 ( 1 ) 3 

q2 q q q 

From this we can see that for square matrices, the variance grows like n3 , and the 
standard deviation grows like n312 • 

Over the field with two elements, the variance is 

and so the standard deviation is asymptotic to (n/2)312 • In the example shown in FIG­
URES 1 and 2, the standard deviation of the actual weight distribution of rank 1 matri­
ces is 44.63 (rounded to two places) . The value of (n/2)312 with n = 25 is 44. 1 9  (also 
rounded to two places) .  
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Further questions 
Analyzing the C R factorization for rank 2 matrices should conceivably allow us to 
find the weight distribution for rank 2, but the analysis is considerably more difficult, 
and for higher ranks the difficulty continues to increase. This suggests gathering some 
information by simulation. In FIGURE 3, we show a histogram for the weights of 
1 0,000 matrices of rank 2 and size 25 x 25 over F 2 . The average weight from Theorem 
2 in this case is 

252 ( 1  - 1 /2) ( 1  - I /2)2 
= 234.3750 . . .  ( I - I/225 )2 

The sample mean is 234.4434, and the sample standard deviation is 39.520 1 .  The 
histogram makes it plausible that the weight has a limiting normal distribution. In fact, 
for any k we expect a limiting normal distribution for the weight (with suitable scaling) 
of rank k matrices as the size goes to infinity. 
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Figure 4 Histogram for the weight of 1 0,000 rank 2 matrices, m = n = 25, q = 2; bins 
have width 1 0 

The question of simulation leads to the question of efficiently generating random 
matrices of fixed rank. Calabi and Wilf [1] treat the related problem of randomly gen­
erating a subspace of fixed dimension over a finite field, and Wilf has suggested to us 
that a random rank k matrix could be generated by adding together k matrices of rank 
I, which are easy to generate, and then keeping those of rank k. Alternatively, one 
might use the C R factorization. Selecting R is exactly the subspace selection problem 
just mentioned. Selecting C can be done by generating a random m x k matrix and 
keeping those of rank k. Which approach is more efficient we leave as an open ques­
tion, as well as the question of whether there are even better ways to generate matrices 
of a fixed rank. 

We have focused on the weight of fixed rank matrices, but it would be interesting to 
look at the rank of fixed weight matrices. As an example, consider the n x n matrices 
of weight n .  The number of these with rank I can be expressed in terms of the divisors 
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of n ,  using our previous result. Those of rank n are generalizations of permutation 
matrices and there are n ! (q - l )n of them. What about the other ranks? In particular, 
how many n x n matrices of weight n and rank n - 1 are there over F 2 ? 

Since the weight of A is the Hamming distance from A to 0, it plays a role analo­
gous to the norm of a real or complex matrix. In both cases it is the distance to the only 
matrix of rank 0.  Now we may ask for the distance from A to the subset of matrices 
of rank 1 ,  that is for the minimal distance from A to some matrix of rank 1 .  In general 
we may ask for the distance from A to the matrices of rank k. For real or complex ma­
trices these distances (using the linear map norm) are given by the singular values and 
can easily be computed [3, p. 468] . For matrices over finite fields can these distances 
(defined by the weight) be computed in any other way than by exhaustive search? 
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What is the largest regular n-gon that fits in a unit square? Can it be folded from a 
square piece of paper using standard moves from origami? Answering the first question 
is relatively easy, using simple ideas from geometry. The second is more interesting; 
our answer illustrates the difference between origami and the standard compass-and­
straightedge constructions of the Greeks, where, for instance, the 7-gon cannot be 
constructed. Not only can we fold a 7-gon, but we can fold the largest one possible 
from a given square piece of paper. 

Origami (from the Japanese oru, to fold, and kami, paper), is the ancient art of 
paperfolding. When we fold a paper in half, we create a line segment and bisect 
a length. These simple moves can be combined to reproduce any compass-and­
straightedge construction [1 ,  14] . Thus, by origami, as with an unmarked straightedge 
and compass ,  we can construct roots of any second-order polynomial from a given 
unit length. 

However, many constructions known to be impossible under the standard Greek 
rules, such as trisecting a given angle, become possible with origami. For instance, 
using a construction technique due to Lill and first used for origami by M. P. Beloch 
[2] , we can construct roots of cubic polynomials by folding [1 ,  5, 7, 12] . Origami also 
simplifies certain constructions that are possible, but cumbersome, with compass and 
straightedege. 

Since origami often begins with a square piece of paper, we propose not only to 
fold a regular n-gon, but to fold the one with the largest area that fits in the square. 
Such polygons will be called optimal polygons.  For instance, the side of the largest 
equilateral triangle that fits in a unit square (shown in FIGURE 4) is known to have 
length v'6 - ..Ji :::::; 1 .035.  Wetzel [18] takes this as the starting point for his article 
"Fits and Covers ," which gives many answers to similar problems, but does not address 
our question. 

Our first step is to determine the proper orientations of optimal polygons with re­
spect to the square. We do this in complete generality and then consider how to con­
struct them by folding. We show how to fold the optimal hexagon and pentagon, which 
can also be constructed with compass and straightedge. Moving into the realm of tech­
niques that break the Greek rules, we trisect an angle and show how to fold the optimal 
7-gon and 9-gon, neither of which can be constructed with straightedge and compass 
alone. It turns out that in each case we fold a star polygon as an intermediate step. 

Are you eager to fold the optimal 1 1 -gon? If so, you will have to invent a folding 
technique that permits you to construct roots of a quintic polynomial ! 

Facts about optimal polygons 

The goal is to find the largest regular n-gon that can be folded from a square piece of 
paper, for n ::: 3. Of course, the case n = 4 is trivial, with no folding required. For the 
general case, let us review some facts about the regular n-gon. 

Let R be the radius of the circumscribed circle and r the radius of the inscribed 
circle. (Another name for r is the apothem of the polygon. )  The reader may wish to 
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confirm that r = R cos(rr I n ) .  The diameter of the n-gon, denoted L ,  is the maximum 
distance between any two of its points . A contrasting quantity is the altitude, meaning 
the shortest perpendicular distance from a vertex to an opposite side. When n is even, 
these quantities are simple, the diameter is  just 2R and the altitude is 2r . When n 
is odd, the altitude is rather easily seen to be R + r ,  which is 2R cos2 (rr 1 (2n ) ) .  The 
diameter can then be found to be 2R cos (rr 1 (2n ) ) .  (FIGURE 1 will help with this . )  

Another useful quantity is l ,  the side of a star polygon. (Here, by star polygon, we 
mean the figure obtained by joining the vertices in a polygonal path, but skipping over 
one vertex each time. Experts use the Schllifti symbol {nl2} to denote this  particular 
star polygon. )  FIGURE 1 shows that l is 2R sin(2rr I n )  and that the side of the polygon 
is h =  2R sin(rrln) . 

Before fitting our n-gon into a square, we first fit it into a strip. It turns out to be 
simplest to consider the n-gon to have a fixed radius R and find out how wide the 
strip must be to contain it. Depending on the orientation of the n-gon, the necessary 
width will fall somewhere between the diameter and the altitude. S ince the altitude is  
smaller, we might decide that it is best to orient the polygon with its  altitude along one 
dimension of the square. Unfortunately, the n-gon is always fatter in the perpendicular 
direction. 

Therefore, let us find the narrowest strip of paper that can contain a given polygon 
when it is tilted with respect to the strip at an angle e .  For afixed rotation angle e, the 
minimum strip width is  denoted a (e ) .  The odd case is  shown in FIGURE 1 .  

L 

Figure 1 The width of a str ip  that conta i n s  a ti l ted polygon 

Aided by FIGURE 1 ,  which shows the odd case, the reader can verify the following 
formula for a (e ) ,  given in terms of the number n of edges (or vertices) of the polygon, 
and the radius R of the circumscribed circle: 

• If n is odd, a (e)  is (rrl n) -periodic and a (e) = L cos(e - rrl (2n ) )  for e E [0, rei n ] .  
Here, L = 2 R  cos(rr I (2n) )  i s  the diameter of the polygon. 

• If n is even, a (e)  is (2rr ln)-periodic and a (e )  = L cos (e - rc I n )  for e E [0, 2rr I n ] .  
I n  this case, L = 2 R .  

Now that w e  know the narrowest strip that contains a tilted regular polygon, we 
add a second strip of paper, orthogonal to the first one, and require that it too must 
contain the polygon. Observe from FIGURE 2 that the width of this  second strip will 
be a (e + rc 12) . If the polygon is to fit into a square, each strip must have width A (e)  = 

max{a (e) ,  a (e + rrl2) } as shown in FIGURE 3 .  Thus, if we minimize A (e) ,  we find the 
smallest square, which is equivalent to find the largest regular polygon within a given 
square. From the previous expressions for a (e )  (depicted in FIGURE 3), we derive the 
following values for the side of the smallest square: 
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Figure 2 Two perpend i c u l a r  str i ps 

A(9) 
a(9) ' \a(e + rtf2) 

n even A(9) 
, a(9) 

''a(e + rc/2) 
f-+-+----e 0 3rtf4n 

r--+--_, ______ e 
0 rtf2n 3rtf2n 

rtf4n 

Figure 3 Str i p  prob lem so lv ing  proced u re 

• eopt = :rr 1 ( 4n) (modulo :rr 1 (2n) )  if n is odd, 
• eopt = :rr 1 (2n) (modulo :rr 1 n) if n is even. 

Note that in each case, a (eopt) = a (eopt + :rrl2) and so one can conclude that each 
side of the square touches at least one vertex of the optimal polygon. Moreover, using 
the formulas for these angles eopt . the reader may prove that each optimal polygon 
has at least one diagonal of the square as an axis of symmetry. FIGURE 4 shows the 
optimal polygon placements up to the octagon (n = 8 edges). 

�DDDDDD 

Figure 4 P lacement of opti ma l  po lygons 

We remark that this pattern also gives us the optimal polygons that fit any rectangu­
lar piece of paper, and not only square ones. 

Folding the optimal hexagon and pentagon 

The case of the optimal hexagon (n = 6 edges) involves the angle 2:rr 16, and is very 
easy to construct. Given a square of paper with side 1 ,  we use the previous formula 
for eopt to deduce that R = 1 1 (2 cos (:rr 1 1 2) ) .  This gives us the edge length, h = R = 
.J2(.J3 - 1 ) 12.  The side of the the star hexagon is l = 2h cos (:rrl6) = .J2(3 - .J3) 12. 
Our construction, which first produces the star hexagon, is shown in FIGURE 5. 

• Step 1 :  Fold comer B onto the central vertical line to create line A E ,  which meets di­
agonal B D at F. Since sin(LB'  AD)  = 1 12,  this is a simple technique to get an angle 
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Figure 5 Fo l d i ng sequence of the opti ma l  hexagon 

2 7 5 

LE'AD = nj6.  Then, L E A E  = L E A E' = L E A E'/2 = (n/2 - LE'AD)/2  = 
nj6 again. (We have trisected the angle L E A D = nj2; this is easy for this par­
ticular angle, but more difficult for general case, as we will see for the nonagon. Of 
course, if we have only straightedge and compass we cannot trisect a general angle at 
all . )  Notice that L E A C  = n/4 - L E A E  = n/ 1 2, so, D F  = D O +  O F = O A  + 
O A  tan(LEAC) = .J2( 1  + tan(n/ 1 2) ) /2 = .J2(3 - ../3) /2 .  This is the length l of 
the desired polygon side. The following steps are needed to move the crease of length 
l in a correct position to obtain an edge of the optimal hexagon. 

• Step 2 :  Turn over the model. Split D F in two by folding, and create the fold G H .  
Its length i s  G H = D F and due to symmetry with respect to the diagonal, G H is 
an edge of the optimal star hexagon. 

• Step 3: Unfold. Bring H onto the main diagonal at I, with G as an end point of the 
crease. 

• Step 4:  Fold G I and H I .  
• Step 5 :  Complete the star polygon, using symmetries. 

Folding a pentagon (n = 5 edges) requires the angle 2n j5 and is more difficult 
than folding the hexagon. As early as 1 989, Roberto Morassi [13] designed an origami 
construction of the optimal pentagon. The technique shown in FIGURE 7 has been 
developed independently and seems much simpler. As before, the star version of the 
polygon is used. With an initial square of unit edge length, we get l = 1 /  cos (n /20) , 
as in FIGURE 6.  

Figure 6 Opti mal  pentagon and i ts rel ated star pentagon (or pentagram) 

• Step 1 :  With D as the middle of the edge, bisect the angle L E A D .  The crease 
is AC,  tan(LDAE) = 1 /2 and L E A C  = LCAD = ( 1 j2) L E A D  = ( l j2) (nj2 -
L D A E ) .  We can compute tan(LEAC)  = (vfs - 1 ) /2 = E C ;  this is the reciprocal 
of the golden ratio. 
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Figure 7 Fo l d i ng seq uence of the opti ma l  pentagon 

• Step 2: Fold C on the central horizontal line DG at F, with B as an end point 
of the crease. Since cos (n/5) = l j (,JS - 1 ) and BG = 1 /2, we get B F  = BC = 

(,J5 - 1 ) /2 = l / (2 cos (n/5))  = BGj cos(n/5) . This allows us to conclude that 
cos (LFBG) = B G j B F  = cos (n/5) and LFBG = n/5.  

• Step 3 :  Bisect LFBG to get L H  B A  = n/ 1 0. Unfold. 
• Step 4: Bisect L A B  H (fold behind) to get L A B  I = n j20 and B I = 1/ cos(n j20) . 

This is the length l of the optimal pentagon edge. As before, the following steps are 
needed to move the crease in a correct position. 

• Step 5: Bring I on B E  at J .  
• Step 6 :  Fold in half B 1 to get K .  Unfold. 
• Step 7:  K L = B J  = B I  = l is the correct edge. 
• Step 8 :  Complete the polygon. 

Folding other optimal polygons 

If the optimal square, triangle, and octagon, are the easiest regular polygons to de­
sign (the reader may begin to try to fold them, except for the square . . .  ), the optimal 
hexagon and pentagon are the next easiest. As soon as a regular polygon can be con­
structed by folding, the corresponding optimal polygons can be also folded with a 
technique similar to the one used in this paper [ 4] . 

In a publication from 1 837,  P. L. Wantzel [16] demonstrated which regular poly­
gons are constructible with straightedge and compass (see also Carrega [3] ) .  A nec­
essary condition concerns the number of edges of these polygons : They must have 
n = 21' /1 fz . . .  !s edges, with p an integer and the numbers fi different primes of the 
form 2m + l ,  where m is also an integer. This result can be further simplified because 
a necessary (but not sufficient) condition for these f to be primes, is that they be Fer­
mat numbers, that is,  numbers of the form 22m + I ,  m still being an integer. The only 
known Fermat primes to date are 3, 5, 1 7, 257, and 65537 [17, 9] . 

We conclude that all the previously folded polygons (n = 3 ,  n = 22 
= 4, n = 5 ,  

n = 2 1  x 3 = 6, n = 23 = 8) can also be  constructed with straightedge and compass.  
This will  not be the case for heptagon (n = 7 edges) and nonagon (n = 9 edges), 
for instance. Using the technique mentioned in the introduction to solve third-order 



VOL .  79, NO. 4,  OCTO B E R  2 006 2 7 7  

equations b y  folding, the previous set of constructible polygons can be extended to the 
set of polygons with n = 2m 3q 81 8l . . .  8s edges, where the 8; are all different primes of 
the form 2P3r + 1 ,  with m ,  p, q ,  and r being integers [15, 12, 1 ] .  Such a construction 
will be necessary to fold the optimal heptagon and nonagon. 

To introduce this new construction, let us recall one of its applications : the trisec­
tion of an arbitrary angle e [6] , known to be impossible with Euclidean constructions 
(for a nice discussion on this subject, the reader may refer to the web page http : 

I /www . j imloy . com/ geometry /trisect . htm) . To trisect an arbitrary angle, consider the 
construction of FIGURE 8, in which isosceles triangle AA'  B has been folded in half 
to construct two copies of angle y .  Construct the perpendicular A D  to A B  to get 
LA'  A D = y .  The main idea is then to look at � .  the perpendicular bisector of AA' ,  
and reflect across � to bring B onto B' ,  C onto C' ,  and D onto D' .  Note that the angle 
e = L D'A'B is 3 y . 

e 

Figure 8 I l l ustrat ing  the tr i section prob lem 

The whole construction can now be reversed to perform the trisection of an angle e 
that is shown in FIGURE 9 :  

• Step l :  Suppose the angle LD' A'  E = e to  be  trisected is established by the fold 
A' E .  Make two horizontal folds, with the only requirement that they be equally 
spaced (A'C' = C' B') .  Fold the paper to simultaneously bring B' onto A' E and A'  
onto the first horizontal fold. Call / the intersection of this new fold with � - Unfold. 

• Step 2:  It is not too hard to show that Ll A' E = L D' A'  E /3 .  

Figure 9 So lv ing  the tr i sect ion prob lem 

The trisection of an angle requires solving a third-order polynomial equation, while 
intersecting circles and lines (basically, the Euclidean constructions) requires only 
second-order polynomial equations.  The new operation in FIGURE 9 allows us to con­
struct additional polygons.  

Since folding a nonagon (n = 9 edges) is a l ittle easier than folding the heptagon, 
let us begin with it. FIGURE 10 briefly describes the corresponding sequence. Folding 
this figure requires precision (and a large square of paper), and proving that an exact 
optimal nonagon is obtained is a not such an easy task [4] . Both are left as challenges 
to the reader. Here are some guidelines :  
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• Step 1 :  Precrease diagonal and central lines. Fold rrl3 = L B A E ;  D should lie on 
the central horizontal line. Unfold. 

• Step 2: With the trisection method, fold 2rr 19 = L B A F  (then, LF AC = rr 14 -
2rr 19 = rr 136) .  The point G is the intersection of A F  and the central vertical line. 
Since AH = 1 12, AG = 1 1 (2 cos(2rrl9)) .  

• Step 3 :  Fold the perpendicular to A F  (and not to A C ! )  at G .  It intersects diago­
nal A C  at I .  Then A I = A GI cos (rrl36) ; this is the length of the edge of our star 
polygon. (Note that nonagram usually refers to a different star polygon, the {913 } 
polygon, since edges connect every third vertex. Recall that we are talking about a 
{912} regular star polygon) . 

• Step 4: Duplicate this distance at I K .  
• Step 5 :  Complete the nonagon (quite challenging, again). 

(!) @ 
D�E C D�E � 

I 

G 

A / B A 
H B 

Ic-71 

A� 
K 

@ 

K 

@ 
�--.,.c. ' ' F ', I 

� ' 
AK...--...., 

Figure 1 0  Fo l d i n g  seq uence of the opti ma l  nonagon 

An even more challenging construction is the one of the heptagon (n = 7 edges). 
This time, the angle 2rr 11 is involved, unattainable with Euclidean constructions. It 
also requires the previous technique, designed to solve any third-order polynomial 
root [12] .  (Let us just mention that 2 cos (2rr 17) is a root of t3 + t2 - 2t - 1 = 0 and 
that the solving technique is the same as in [11,  8] . )  FIGURE 1 1  describes briefly the 
corresponding sequence, with many details left for the reader to verify: 

• Step I :  Precrease diagonal and central lines. Fold the left and upper halves in half 
again and unfold. 

• Step 2: Use previous technique, to get a fold HI of slope 2 cos (2rr 17) = AI I A H  
(G i s  located halfway between the previous two horizontal folds) .  

• Step 3 :  Fold A to I, crease, and unfold. 
• Step 4: Fold H onto the new horizontal line through I to obtain L I  A H' = 2rr 11 

(because AI I AH'  = A I 1 (2 AH) = cos (2rr 17)) .  
• Step 5: The intersection of  the folded edge and the initial central line is K .  Note that 

LC A K = 2rr 17 - rr 14 = rr 128 and A K  = A E  1 cos(2rr 17) = 1 1 (2 cos (2rr 17) ) .  
Fold the perpendicular to A K  (and not to A C ! )  at K :  i t  intersects diagonal A C  at 
L .  Unfold (then AL = A K  I cos(rr 128) ; this is the length of the edge of our star 
heptagon, also called the {7 12} regular star polygon, or heptagram). 

• Step 6:  Duplicate this distance at M N .  
• Step 7:  Complete the heptagon. 
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Figure 1 1  Fo l d i ng sequence of the opti ma l  heptagon 

Prospects 

2 79 

Several regular polygons can be folded with Euclidean constructions . Their optimal 
versions can be folded also, though in practice they become less and less easy to obtain .  
With a special basic fold that is recalled in this paper, and that has now widely spread 
through the community of paperfolders, more can be done. But even with it, not all 
of the polygons can be folded. For instance, the first unattainable regular polygon is 
the hendecagon (n = 1 1  edges) . A construction, simple enough to enter the standard 
repertoire, and allowing the construction of the regular hendecagon, would require us 
to solve a 5th-order polynomial equation (the trigonometric functions of 2rr / 1 1  are 
roots of such a polynomial equation) . This is still to come. 
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P roof Without Words :  Com p l ex N u m bers with Mod u l us One 

Any complex number z with l z l  = 1 ,  except z = - 1 , can be expressed as  :�:: 
for some real number t .  

l + i t  

- 1  X 

l - i t  

1 + i t e ( e ) 
arg --. = arg ( l + i t ) - arg ( l - i t ) = - - - - = e = arg z ,  

1 - I t 2 2 

1 1  + i t 1 - 1 1 + i t l  
- --- - - 1 - l z l . l - i t 1 1 - i t l  

Observe that t = tan � . 
-Jean Huang (senior) 
Technical High School 

St. Cloud, MN 5630 1 
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Geometry is a familiar source of insight in linear algebra. Examples include the 
the geometric effect of linear transformations (rotation, reflection, shearing, etc . )  and 
the interpretation of the determinant of a 2 x 2 matrix as the area of a parallelogram 
defined by the columns of the matrix (which has higher dimensional analogues) .  In this 
paper, we describe a different kind of geometric construction for 2 x 2 matrices, which 
links properties of the eigenvalues and eigenvectors of the matrix to simple geometric 
properties of a circle that we associate to the matrix. 

If A is a square matrix and A is a number, then a nonzero vector w such that A w = 
AW is an eigenvector of A ,  and A is an eigenvalue of A .  For a 2 x 2 matrix this is 

or 

(a - AH" + bry = 0,  c� + (d - A) 'Y/ = 0. ( 1 )  

The eigensystem calculation i s  to find the values of A ,  � ,  and 'YJ that satisfy this 
equation, other than the trivial � = 'YJ = 0. An algebraic procedure is given in any 
linear algebra textbook. 

This article presents a geometric construction for the solution, using a circle we 
call the eigencircle. Real eigenvalues are given by two points on the eigencircle, and 
certain intersecting chords through these points give corresponding eigenvectors (FIG­
URE 2). A matrix with complex eigenvalues determines an eigencircle in the same way 
(FIGURE 1 )  and this gives the eigenvalues (FIGURE 3b), but the eigenvectors illustra­
tion needs a third dimension to show the imaginary parts (FIGURE 4). 

As well as these computational aspects, we find that certain properties of the eigen­
system correspond to geometric properties of the circle. One example, not commonly 
given in algebraic treatments, is the angle between two real eigenvectors. The eigen­
circles of all matrices that share the same eigenvalues form what is called a coaxial 
system, intersecting in the eigenvalue points if the eigenvalues are real . 

The second equation of ( 1 )  gives, by inspection, 

w = ( � ) = any multiple of ( d _=-c 
A ) . (2) 

2 8 1  
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If w i s  nonzero, it i s  an eigenvector provided the first equation of ( 1 )  i s  also satisfied: 

(a - A) (d - A) - be = 0. (3) 

Thus the eigenvalues of A satisfy a quadratic equation (the characteristic equation of 
A) .  

Define a determinant 

I
a - x  B (x , y) = c + y b - y  I d - x · 

The second degree terms are x2 + y2 ,  so B (x ,  y) = 0 is the equation of a circle, when 
(x , y) are taken to be Cartesian coordinates .  This is the eigencircle of A = ( � � ) .  
From (3), if (A , 0) lies on the circle, then A is an eigenvalue of A .  

Subsequently, we use the following notation: PQ denotes the vector from the point 
P to the point Q ;  P Q refers to the line segment; the signed length is denoted by P Q,  
so  that P Q = - Q P , and when P Q i s  parallel to one of  the coordinate axes, the sign 
of P Q is naturally determined by the relative coordinates of P and Q. For example, 
in FIGURE 1 ,  FG > 0, GE > 0, EH < 0, and H F < 0. 

Geometric construction of real eigensystems Substituting any of the coordinates 
F = (a , b) , G = (d , b) , E = (d , -c) , or H = (a , -c) into the matrix whose deter­
minant is B (x , y) produces a zero row or column. These four points, which determine 
a rectangle, therefore lie on the eigencircle of the matrix A .  FIGURE 1 is drawn as­
suming a < d and b < -c, but the other three possibilities merely require the reversal 
of positive direction on one or both of the coordinate axes. Segments FE and H G 
are diameters of the eigencircle, even in the special cases a = d (F = G,  H = E) or 
b = -c (F = H ,  G = E).  Other special cases, such as both d = a and c = - b, are 
discussed at the end of this section. 

y 

- c  

b 

0 a d X 

Figure 1 The e igen c i rc l e  of the 2 x 2 matr i x  A =  ( � � ) 
If the x -axis intersects the eigencircle, the eigensystem can be easily determined. 

If L = (A , 0) is a point of intersection, the signed length 0 L = A is an eigenvalue of 
A ,  and the vector rE gives a corresponding eigenvector, where, as before, the point 
E (d ,  -c) is the one that makes the second row of the matrix vanish. FIGURE 2 shows 
a case where O L 1  = A 1  < 0 < A2 = OL2 •  Equation (2) verifies this eigenvector 
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prescription, as 

Figure 2 I ntersections  L; of the rea l ax is  with the e igen c i rc l e  give e igenva l ues /... ; ;  the 

vectors r;E are e igenvectors.  

There are some special cases, which we encourage the reader to examine: 

(i) If Ox is a tangent to the eigencircle, L 1  = L2 and there is just one eigenvalue. 
(ii) If b = 0 or c = 0, then Ox contains FG or H E ,  and the eigenvalues are a and d ,  

which includes b = c = 0 ,  i n  which case F G = H E  is a diameter defining the 
eigencircle. 

(iii) The prescription for the eigenvector fails for the eigenvalue d when c = 0, be­
cause then L2 = E. In that case, the direction of the eigenvector can be shown to 
be given by the tangent at E .  

(iv) When a = d and c = -b, the eigencircle becomes a single point F = G = E = 
H .  There is a real eigenvalue d only if c = 0, so that the single point is (d , 0) on 
the real axis,  and then any nonzero vector is an eigenvector. 

Note that the construction can be reversed, to obtain a matrix from its real eigen­
values and eigenvectors . The eigenvalues give the points L 1  and L2 (on the x-axis) 
required for FIGURE 2, and E is the intersection of the lines through L1 and L2 having 
the directions of the given eigenvectors . Then triangle L 1 L2 E  determines the eigencir­
cle. Inscribe in the eigencircle a rectangle with E as one vertex, and sides parallel and 
perpendicular to the axes, as in FIGURE 1 .  Then the rows of the matrix can be written 
down from the coordinates of E (d ,  -c) and F (a ,  b) . 

Complex eigenvalues To include cases when the x-axis does not intersect the eigen­
circle, the geometry of the previous section may be rewritten using a result proved in 
Euclid's  Elements III. 35-36 [4] : If a line through any point P meets a circle in points 
Q and R, the product of the lengths, P Q · P R, is the same for any direction of the line. 
The lengths are signed, so the product is positive (negative) when P is outside (inside) 
the circle. The value of P Q · P R is called the power of the point P with respect to the 
circle. 

Coordinate geometry shows that the power of P may be obtained from the equation 
of the eigencircle by substituting the coordinates of P into B (x ,  y) .  In particular, the 
power of 0 = (0, 0) is det A ,  which is thus positive or negative according as 0 is 
inside or outside the circle. For example, in FIGURE 3(b), det A = O W2 • 

Our application to eigenvalues, shown in FIGURE 3 ,  takes for P the point Y ,  which 
is the projection of the center C of the eigencircle onto the x-axis ; the line through 
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(a) (b) 

Figure 3 (a) Rea l e igenva l ues OL; = O Y  ± ,J- YM · YN; (b) Complex e igenva l ues 
OY ± i Y V; YV (and O W ,  u sed l ater) are tangents 

C and Y defines the diameter M N .  In FIGURE 3(a) the power of Y is YL 1 • Y L2 = 
Y M · Y N .  As Y L 1 = - Y L2 , Y L f = - Y M · Y N > 0, and the real eigenvalues 0 Y + 
YL;  are 

A = O Y ± -J- Y M · Y N .  (4) 

This prescription is also valid when the x-axis does not intersect the eigencircle, as 
in FIGURE 3(b), where Y M · Y N > 0, so (4) gives complex values. If Y V  is a tangent 
at V to the circle, then the power of point theorem gives Y M · Y N = Y V2 • Thus Y V 
gives the imaginary part of the complex eigenvalue. 

To show that (4) satisfies (3), so that A is an eigenvalue, one uses the coordinate 
geometry of the eigencircle to obtain the coordinates of Y ,  M, and N. This is left to 
the reader. 

For a geometric representation of ( d _::-c J.. ) when A = 0 Y + i Y V, a third dimension 

may be introduced to show the imaginary part. Put A = f + i h .  In FIGURE 4, Y L 
and Y K ,  each with length Y V  = h ,  are perpendicular to the plane of the eigencircle. 
Then rE and KE represent the complex eigenvectors, the third component giving the 
imaginary part of the eigenvalue: 

represents the complex eigenvector ( d - !c- ih ) . 

Special case (iv) can now be considered. If the radius of the circle in FIGURE 4 
shrinks to zero, then all the points on the circle coincide with C, which is (a , b , 0) = 
(d , - c ,  0) . Thus Y V  = YC = b and O Y  = a . The eigenvalues are f ± ig = a ±  ib ,  
and rc = (0 b - b) T and KC = (0 b b) T are eigenvectors. 

Geometric derivation of eigensystem properties Our geometric description of 
eigensystems of 2 x 2 real matrices involves circles, chords, and tangents. These are 
related by many celebrated theorems of Euclidean geometry. We apply these to give 
geometric derivations of the properties of eigensystems usually presented in algebraic 
treatments . 
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L = (f, O, h)  0 

y = (f, 0, 0) 

K = (f, 0, -h)  

Figure 4 YL and YK a re perpend i c u l a r  to  the  e igen c i rc le, w i th  lengths eq u a l  to  that  of 
the tangent Y V  

(a) From (4), the sum of the eigenvalues i s  2 O Y ;  FIGURE 1 gives the coordinates of 
the center as ( (a + d)/2, (b - c)/2) , and FIGURE 3 then gives O Y  = (a + d)/2. 
Thus the sum of the eigenvalues is a + d,  the trace of A .  

(b) From FIGURE 3(a), the product of real eigenvalues i s  OL 1 • O L2 = power o f  0 = 
det A .  

(c) From (4), the product o f  complex eigenvalues is O Y2 + Y M · Y N.  From FIG­
URE 3(b) this is 0 Y2 + (power of Y) ,  which is 

O Y2 + Y V2 = O Y2 + YC2 - C V2 = OC2 - C V2 = O C2 - C W2 , 

where W is an eigencircle point defined by a tangent from 0 ,  finally giving 
O W2 = power of 0 = det A .  

(d) To investigate the angle between eigenvectors, which w e  will call {J ,  recall the 
Euclidean theorem that the angle subtended at the center C by a chord (in this 
case L 1 L2) is twice the angle subtended at any point on the circumference (for 
instance, E) . This quickly leads to LL 1 EL2 = LL 1 CY .  Drawing segment Y C  into 
FIGURE 2 shows that cos f3 = Y C j L 1 C ;  then, since Y C is the y-coordinate of C,  
given i n  (a), w e  have 

1 
YC = l (b - c) ,  

and since L 1 C,  the circle 's radius ,  i s  FC = ! FE in FIGURE 1 ,  we have 

Combining these gives 

2 (b - c)z 
cos {3 =  ----�------� 

(d - a)2 + (b + c)2 

(e) For the special case of a symmetric matrix (b = c) , the x-axis is a diameter, so the 
famous result that f3 = rr /2 for this case follows alternatively from the Euclidean 
theorem that the angle subtended by a diameter (in a semicircle) is a right angle. 

(f) From FIGURE 1 ,  the eigencircle diagram for the transposed matrix A T (which in­
terchanges b and c) is obtained by reflection in the real axis .  For real eigenvalues 
FIGURE 3 (a) becomes FIGURE 5, showing that A and A T have the same eigen­
values. In FIGURE 2 note that E (d , -c) is determined by the second row of A, so 
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the appropriate corresponding point o n  the eigencircle of AT i s  G' .  Then L;Gr are 
eigenvectors of A T ,  using the appropriate points in FIGURE 5 .  These vectors are 

as expected from (2), and their transposes are row eigenvectors of A .  Thus row 
eigenvectors are determined by the second column of A .  

E' = (d , c) 

Figure 5 The c i rc l e  L 1 L2 G' E' is the eigenc i rc l e  of A r, by reflect ing in the rea l axis the 
e igenc i rc l e  of A 

For complex eigenvalues similar observations apply. A reflection of FIGURE 3(b) 
in the x-axis shows the eigenvalues are unchanged ( O Y  ± i Y V --+ O Y  ::r i Y V' and 
Y V' = Y V) .  In a reflection of FIGURE 4 the complex eigenvectors will be represented 
by W and W . 

Real matrices with specified eigenvalues Given real eigenvalues, the points L 1 and 
Lz (FIGURE 2) are determined. Take any point C on the perpendicular bisector l of 
L 1 L2 (if A. 1 = A.2 , then l is the line perpendicular to the x-axis through L 1 = L2) .  Draw 
the circle with center C through L 1 and L2 (or with the x-axis tangent if L 1 = L2) ,  and 
take any point E on this circle. If E F is a diameter, then the information in FIGURE 1 
is determined, and we can write down a matrix from the coordinates of E and F. 

Given complex eigenvalues f ± ih ,  draw a circle with center Y (f, 0)  and radius 
h ,  and the line l through Y perpendicular to Ox . The tangent to this circle q at any 
point V meets l in a point C (FIGURE 6). Take a circle with center C and radius 
C V .  From FIGURE 3(b) any diameter EF of this eigencircle determines a matrix 
with the required eigenvalues. As V moves round q ,  C assumes all points of l outside 
the diameter U Z, and the resulting eigencircles give all the required matrices . Each 
eigencircle cuts q orthogonally. The points Z = (f, h) and U = (f, -h) are limiting 
cases of eigencircles of zero radius, for which a = d = f and c = -b = ±h (see 
FIGURE 4) . 

In the real case, the eigencircles are a coaxial set intersecting in L 1 and L2 (FIGURE 7(a)) .  In the complex case the eigencircles are a non-intersecting coaxial 
system (FIGURE 7(b)) .  The real axis is always the radical axis of the coaxial system. 
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c 

X 

u 

Figure 6 C i rc l e  q with center Y = (f, 0) and rad i u s  h 

(a) (b) 

2 8 7  

X 

Figure 7 System of coax i a l  e igen c i rc l es givi ng a l l  e igenc i rc l es for the same pa i r  of e igen­
va l ues: (a )  Rea l e igenva l ues; (b) Complex e igenva l ues 

Alternative derivation for a complex eigensystem Define a determinant 

, 
I 
a - x - i z  b - y  

I 
B (x '  Y '  z )  = c + y d - x - i z 

where (x , y ,  z) are Cartesian coordinates .  Then B' (x ,  y ,  z) = 0 can be written as two 
real equations 

z (2x - a  - d) = 0 

x2 + y2 - z2 - x (a + d) - y (b - c) +  ad - be = 0. 

(5) 

(6) 

Assuming z i= 0 (z = 0 gives B(x ,  y) and previous work) then x = (a + d) /2, and 

( I ) 2 2 2 y - 2 (b - c) - z  = P  (7) 
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where p i s  the radius of the eigencircle (L 1 C i n  FIGURE 2) .  This represents a rectan­
gular hyperbola in the plane x = (a + d) j2 (FIGURE 8),  with center C and axis M N,  
which is the eigencircle diameter shown in  FIGURES 3(b) and 4 .  

L = (0, h)  

y = (0 ,  0)  
N 

K = (0,  -h) 

Figure 8 A l l  poi nts h ave x = (a + d) j2;  the hyperbol a  con s i sts of (y, z) coord i n ates . 

Exactly as in the real case, the coordinates of the hyperbola points L and K with 
y = 0 give the complex eigenvalues (a + d)/2 ± ih of the matrix A .  Corresponding 
eigenvectors have already been shown in FIGURE 4. 

Some extensions The eigencircle is 

I
a - x  O = B(x , y) = c + y  

b - y  

I d - X  . 

The determinant B' used in the previous section is B with x allowed to be complex. 
One extension we have investigated allows both x and y in B to be complex. Then 

(5) and (6) have four real variables and represent a two-dimensional surface in four­
dimensional space. Eliminating one variable, as in reducing (5)-(6) to (7) ,  leaves a 
hyperboloid of one sheet in a three-dimensional space. The eigencircle and the hyper­
bola in FIGURE 8 are recovered as plane sections of the hyperboloid. 

Another extension uses the determinant 

B"(x ) =
I 
a - � , Y c +  Y 

b - y  
I d - x  

with x and y complex, so the matrix ( x _ � )  may be regarded as representing a quater­-y X 

nion (just as the matrix ( x Y ) may be regarded as representing a complex number -y X 
when x and y are real : see [5, §4 1 ] ) .  This again leads to a two-dimensional surface in 
a four-dimensional real space, and eliminating one coordinate gives a sphere. We call 
this the eigensphere of the matrix, and the eigencircle is a great circle in the coordinate 
plane, defined by Im x = Im y = 0. 

Using the real determinant 

I
a - x  
c + y 

b + ay 
I d - x  

allows illustration of the eigensystem using any conic ; ellipses, hyperbolas , or a 
parabola, respectively appear with a < 0, a > 0, or a = 0. 

Details of these extensions are left for a sequel to this paper. 
Finally, we mention a body of research on multiparameter eigenvalues such as the 

points on the eigencircle considered here. The first study of multi parameter eigenval-
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ues of matrices seems to be a paper by Carmichael [3] in 1 92 1 .  Other examples include 
[1,  2, 6, 7] . Such work typically considers systems of the form 

k 
:L:>'"j Aijxi = 0, (8) 
j= l 

where each A ij is an mi x ni matrix and xi is an ni -element vector. We seek k-tuples (A. j )�= t such that (8) can be solved with each xi nonzero. Much of this work is at quite 
a general level and there seems to be little explicit discussion of the interesting special 
case considered here. We have focused on the properties of this special case, which we 
believe deserves to be better known. 
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Th e Vo l u me Swept O u t  by a 
Mov i n g P l a n a r  Reg i o n  

R O B E R T L .  F O O T E  
Wabash Col l ege 

Crawfordsv i l l e, I N  4 7 9 3 3  
footer®wabash .edu 

I would like to call attention to a beautiful theorem about volume. The only place I 
have found it is in Courant's calculus text [3, p. 295 ] ,  [4, p. 45 1 ] .  Given that this book 
is a classic and that the result is both simple and elegant, it is surprising that it has not 
appeared in every calculus text since. 

The result generalizes both Cavalieri 's  Principle and the Theorem of Pappus as a 
means for computing the volume swept out by a moving planar region. Somewhat 
informally, let Sr . a :::; t :::; b, be a planar region of area A (t)  moving in space. Let 
n(t) be a continuous unit vector normal to the plane of the region, and let v(t) be the 
velocity of the centroid of S1 • Then the signed (or oriented) volume swept out by S1 is 

V = 1b A (t )  n(t) · v(t) dt .  ( 1 )  

Intuitively, the volume i s  signed i n  the following sense. The vector n(t) indicates an 
orientation or forward direction (see FIGURE 1 ) .  Volume swept out in this direction is 
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Figure 1 The velocity v and forward direction n of a moving planar region 

taken to be positive; volume swept out in the opposite (or backward) direction is taken 
to be negative. This is handled in the integrand of ( 1 )  by the sign of n · v. The net signed 
volume swept out is, in general, the result of both forward and backward motions. The 
formula also allows for multiplicities: a point in the path of the moving region may be 
covered more than once and in both forward and backward directions, in which case 
the volume of some neighborhood of the point is counted in ( 1 )  accordingly. 

A recent article by England and Miller [5] gives a variation of ( 1 )  that is both more 
general, in that it allows the reference curve 1' to be one other than the path of the 
centroid, and more specialized, in that it requires y'(t)  to be perpendicular to the 
plane of S, . The result is a nice formula for the signed volume swept out in terms of 
the geometry of 1' and its relationship to the centroid of S, . A proof of their result is 
given below (Theoi:em 2) as an application of ( 1 ) . 

The familiar Theorem of Pappus and Cavalieri's Principle are easily seen to be 
special cases of ( 1 ) . 

THEOREM OF PAP PUS .  Suppose S is a bounded planar region of area A that is 
revolved about a line .e lying in the plane of S. If S lies in one of the half-planes 
bounded by .e, then the volume of the solid of revolution swept out by S is 2rr r A, where 
r is the radius of the circle swept out by the centroid of S. 

(a) (b) 
Figure 2 Theorem of Pappus 

(c) 

FIGURE 2a shows a region S and its centroid. FIGURE 2b shows S rotating about 
a line .e, resulting in the solid in FIGURE 2c. Since the area is constant and n can be 
taken to be vj l lv l l , the integral in ( 1 )  reduces to A times the distance moved by the 
centroid. Since every point of S moves in the forward direction, the signed volume is 
all positive. 

The volume formula in the Theorem of Pappus is valid, in fact, even when .e passes 
through S, as in FIGURE 3a, as long as it is interpreted as signed volume. The line .e 
divides S along a chord into two subregions. As S rotates about this chord, the two 
subregions move in opposite directions, one moving forward and the other backwards. 
Each subregion generates a solid; shown in FIGURES 3c and 3d. Then ( 1 )  implies 
that 2rr r A is the difference of the volumes of these two solids. This illustrates that a 
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(a) (b) (c) (d) 
Figure 3 Generalized Theorem of Pappus 

moving region can simultaneously generate both positive and negative signed volumes, 
an observation that is key to interpreting the integrand of ( 1  ) . 

Cavalieri 's Principle states that if two solids have equal cross-sectional areas when 
cut by any plane parallel to a given plane, then the solids have the same volume 
(FIGURE 4). This is true even if the cross sections of one are stacked up straight and 
those of the other are skewed. What is important is not the exact path of the cross­
sectional centroid, but rather the component of its motion perpendicular to the family 
of planes, which is computed by the dot product in ( 1 ) . If the Theorem of Pappus is 
about rotations, Cavalieri's Principle, in contrast, is about translations. Since the cross 
sections are parallel, two nearby cross sections are (approximately) translates of each 
other. 

Figure 4 Cavalieri's Principle 

Courant states ( I) without proof. Instead, he states and proves its analog for the 
signed area swept out by a line segment moving in JR2, 

A = lb L (t) n(t) · v(t) dt , (2) 

where L is the length of the segment, n is a forward-pointing unit normal vector, and v 
is the velocity of the midpoint, as in FIGURE 5. He goes on to use this to explain how 
a planimeter works (for more about planimeters, see [6, 7, 8]). 

One can think of the integrand of ( 1 )  as the infinitesimal signed volume swept out 
due to an infinitesimal motion of the region (with a similar interpretation for the inte-

Figure 5 Moving segment sweeping out area in JR2 
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grand of (2)). The simplicity of this expression hides the fact that even an infinitesimal 
motion can result in a combination of both positive and negative volumes. This hap­
pens, for example, for the region S in FIGURE 3ab as it rotates about the line £. In 
general it happens when the region S, rotates slightly to Sr+dr about one of its chords, 
£, as in FIGURE 6. (For the purpose of this informal discussion we take a chord of 
S, to be a line in the plane of S, such that there are points of S, on both sides of the 
line. This agrees with the usual notion of chord when the region is connected.)  Part of 
the content of ( 1 )  and its proof is that only the displacement v dt = dx = T ds of the 
centroid relative to the direction of the normal n matters. 

Figure 6 Infinitesimal rotation about a chord 

I find the result in JR2 less intriguing-the formula is almost obvious due to the 
symmetry of a line segment about its midpoint. The "symmetry" of a planar region 
about its centroid is more subtle. For example, a chord through the centroid generally 
doesn't bisect the area of the region. (A chord through the centroid of a triangle parallel 
to one of the sides divides the area in the ratio 4:5.) It follows from ( 1 ), however, 
that if the region rotates about such a chord, the signed volume swept out is zero. 
Consequently, ( 1 )  gives some insight into the geometric significance of the centroid 
that complements the physical center-of-mass interpretation in many calculus texts. 

Definitions and proof To prove ( 1  ), we first make the notion of signed volume 
more precise. Suppose U c JR3 is a bounded region, F : U � JR3 is C1, and F(U) 
is bounded. We take the signed volume covered by F to be the value of J J J u h d V , 
where h = det D F is the Jacobian determinant. It's clear that if F is one-to-one on 
ij+ = {X E U : h (x) > 0} and on u- = {x E U : h (x) < 0}, then the signed vol­
ume covered by F is the volume of F (U+) minus the volume of F(U-) .  (By Sard's 
Theorem [11], the image of U0 = {x E U : h (x) = 0} has volume 0 even if the vol­
ume of U0 is positive.) If F is finite-to-one on u+ U u-,  the signed volume takes into 
account the multiplicity of the coverings. The signed volume swept out by the moving 
planar region in Theorem 1 is to be taken in this sense, as will be clear in the proof. 

THEOREM I . Let P1, a :::; t :::; b, be a family of planes. For each t suppose S, is a 
region in P, such that S1 varies continuously with t. Let A (t) be the area of S, let c(t) 
be the centroid of S1, and let n(t) be a unit normal to P1 • Assume c and n are C1, and 
that U1 S, is bounded. Then the signed volume swept out by S, is given by ( 1) (repeated 
here for emphasis), where v(t) = c' (t). 

V = lb A (t) n(t) · v(t) dt . ( 1 )  

The proof i s  similar to that given by England & Miller [5], but somewhat simpler. 
Note that much of the notation introduced in the proof is used in the remainder of the 
paper. 

Proof Let e1 (t) ,  e2 (t) ,  and e3 (t) form a C1, positively-oriented, orthonormal frame 
along c with e1(t) = n(t) .  (To get this one could, for example, apply the Gram-Schmidt 
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process to n(t) and i to obtain e 1 (t) and e2 (t) ,  assuming n(t ) =!= i for all t ,  and then let 
e3 (t) = e1 (t) x e2 (t) . ) 

Define F :  [a , b] x JR2 � JR3 by 

F(t ,  x ,  y) = c(t) + xe2 (t) + ye3 (t) . 
Note that F(t , 0, 0) = c(t ) , that is,  F maps the t-axis to the path of the centroid. For 
t = to fixed, note that { (t0 , x ,  y) : (x , y) E JR2} is the plane in JR3 = JR.  x JR2 perpendic­
ular to the t -axis at t0 • Similarly, { F (t0 , x ,  y) : (x , y) E JR2} is the plane in JR3 passing 
through c(t0) perpendicular to n(t0 ) , which is the plane P,0 containing S10 • 

For each t ,  let S, =  { (t ,  x ,  y) : F (t , x ,  y) E S, } . Since e2 (t) and e3 (t) are orthonor­
mal, then S, and S, are congruent. Furthermore, the centroid of S1 is (t , 0, 0) . Thus the 
map F achieves a straightening out of the moving region S, into the moving region S, 
that stays perpendicular to a fixed direction (the t -axis) ,  and so that the centroid of S1 
moves in a straight line with constant unit speed. The moving region S, sweeps out a 
bounded region Q in JR. x JR2 • 

The signed volume swept out by S, , that is, the signed volume covered by F i n , is 

V = Jff n h dt dx dy = Iff n �� · ( �: x �;) dt dx dy . 
We have 

aF 
- = v(t) + xe; (t) + ye; (t ) ,  a t  

Using e2 (t) x e3 (t) = e 1 (t) = n(t ) , we have 

and 

]p = - . - x - = v(t) · n(t) + xe; (t) · n(t) + ye3 (t) · n(t) . a F  ( aF aF) , 
at ax ay 

Integrating over Q, we get 

V = Iff n h dt dx dy = lb [!! s, Jp dx dy J dt 

= lb [ v(t) · n(t) J J s, dx dy 
+ e; (t) · n(t) J!s, x dx dy + e; (t) · n(t) J!s, y dx dy] dt . 

(3) 

Now, Jfs, dx dy is the area of S, , which is A (t) . Furthermore, JJ s, x dx dy and 
J J s, y dx dy are both zero, since the centroid of S1 is (t , 0, 0) . Thus the integral 

reduces to J: A (t) v(t) · n(t) dt , which is the desired result. • 

As an example, consider the undulating torus swept out by a moving disk of varying 
radius, pictured in FIGURE 7ab. At time t E [0, 2n ] the center of the disk is c(t) = 
4u(t ) , where u(t) = cos t i + sin t j .  The radius of the disk is r (t) = I + 4 cos (3t) ,  
and the unit normal to the disk i s  n 1 ( t ) = c' (t ) /4. The volume o f  the torus i s  then 
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(a) (b) (c) 
Figure 7 Moving disks sweeping out volume. 

(d) 

We now perturb the disk so that it wobbles as it sweeps out area, pictured in FIG­
URE 7cd. Let N2 (t) = n1  (t) + 4 sin(3t) k + t cos(2t) u(t) (note that this simply adds 
to n1  something in its orthogonal complement) and take n2 (t) = N2 (t)/  I IN2 (t) l l  as the 
new unit normal. The new volume is 

12" 12" 6-J2n (2 + cos(3t) )2 

V2 = A (t)v(t) · n2 (t) dt = dt � 82.2, 
o o .J85 + 4 cos(4t) - 9 cos(6t) 

which is slightly less than the original, as one might expect. 

Moving forward One gets volume, as opposed to signed volume, when J F :::: 0 on 
Q. From the proof, the interpretation of h > 0 is that every point of S, moves in the 
forward direction. In many specific examples this is easy to see by inspection, but it's 
good to know conditions that imply it. Especially useful conditions are ones that can 
be applied directly to S,, as opposed to S, or F. 

Note, from (3) ,  that h is linear in x and y.  Consequently, if h is zero at some 
interior point of S, , but not identically zero on S, , then it is zero along a whole chord C 
of �� and takes opposite signs on opposite sides of the chord. This is the infinitesimal 
version of the fact that if S11 and S,2 intersect, they do so along a common chord. To 
see this, let C = F (C) be the corresponding chord of S, . Points of S, corresponding to 
points of S, for which h > 0 are moving forward. These points are all on one side of 
C. Points of S, on the opposite side of C are moving backwards. It follows that C is the 
chord of intersection of S, and S,+dt in FIGURE 6, and F fails to be one-to-one on any 
neighborhood of any point of C.  Thus, to conclude that ( 1 )  computes volume when the 
S, are connected, it suffices to assume that S,1 and S12 are disjoint when t1 i= t2 , with 
the possible exception of Sa and Sb, which might be identical. In the standard use of 
the Theorem of Pappus this is handled by the assumption that the planar region S lies 
in one of the half-planes of the line of rotation. 

The following proposition gives a precise condition on S, for J F > 0 on S, . 

PROPOSITION .  h > 0 on S, if and only if (x - c(t)) · n' (t) < v(t) · n(t) for all 
X E S, .  

Proof The proof involves rewriting the expression for J F in  (3) .  Since e2 and e3 
are perpendicular to n, we have 

0 = :
t 
( (xe2 (t) + ye3 (t)) · n(t)) 

= xe� (t) · n(t) + ye; (t) · n(t)  + (xe2 (t) + ye3 (t)) · n' (t) . 

Now c(t) ,  e2 (t) and e3 (t) determine a Euclidean coordinate system on P, in which 
(x , y) are the coordinates of x = c(t) + xe2 (t) + ye3 (t) .  By substitution into (3), h 
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can be written as 

JF = v (t) · n (t) - (xe2 (t) + ye3 (t) ) · n' (t) = v (t) · n (t ) - (x - c(t) ) · n' (t ) 

for x E S1 , from which the proposition follows.  • 

A few comments will reveal the geometric significance of the proposition. The in­
equality is a linear condition on points x in the plane P1 of S1 • If it holds for all x E S1 , 
then it holds when x is the centroid c(t ) .  In this case we get v (t) · n (t) > 0, which 
simply says that the centroid must be moving forward. 

The cases when n' (t) = 0 and n' (t) i= 0 are infinitesimal versions of the hypotheses 
of Cavalieri ' s  Principle and the Theorem of Pappus.  To see this,  note that since n(t) 
is the unit normal to P1 , the vector n' (t) is a measure of the rotation of the family of 
planes.  If n' (t) = 0, then having the centroid move forward is sufficient for every point 
in P1 to do the same. This agrees with intuition-in this case the planes P1 and P1+dt 
are parallel (at least to first order) . On the other hand, if n' (t) i= 0, then the planes P1 
and Pt+dt are not parallel, as shown in FIGURE 6. The inequality in the proposition 
defines a half-plane that contains the centroid. The boundary of the half plane is the 
line f1 of intersection of P1 and Pt+dt . (The details of this are not difficult, and are left 
to the interested reader.) In order for the region S1 to be moving forward, it must lie in 
this half plane. 

The interested reader may also verify that the inequality in the proposition is satis­
fied by the wobbling disk example, and so the signed volume computed is the actual 
volume of the solid swept out. 

A variation The hypotheses used by England and Miller [5] are somewhat different 
than those in Theorem 1 .  Instead of following the centroid of the moving region, they 
follow another reference curve y that is assumed to be perpendicular to the plane of 
the moving region. Their integral formula for volume involves the geometry of y and 
the displacement from y to the centroid. 

THEOREM 2. (ENGLAND & MILLER [5 ] ) Suppose that y : [0, f ]  ---+ JR3 is a C2 
curve parameterized by arc length s .  Let Ps be the plane containing y(s)  that is per­
pendicular to y ' (s ) . Let Ss be a region in Ps that varies continuously with s. Let N(s ) 
be the principal normal vector of y and let r (s ) = ( c(s) - y(s) ) · N (s ), where c(s) is 
the centroid of Ss . Then the signed volume swept out by Ss is 

V = 1£ A (s) ( l - K (s)r (s ) ) ds . 

Note that r (s )  is the component of the vector from y(s)  to the centroid in the direc­
tion of the principal normal . 

To prove this we first generalize Theorem 1 and then specialize to the situation 
of Theorem 2. Under the hypotheses and notation of Theorem 1 ,  suppose that y : 
[a , b] ---+ JR3 is a C 1 curve such that y(t) E P1 for all t .  Here we do not assume that 
y is parameterized by arc-length or that P1 is perpendicular to y ' (t) . From Theorem 1 
the signed volume swept out is 

V = 1b A (t) ( y ' (t) + (c' (t) - y ' (t) )) · n(t) dt .  

Since c(t) and y(t) are both in  P1 , then c(t) - y(t) is perpendicular to n(t )  and we 
have 

0 = :
t ( (c(t ) - y(t) ) · n(t)) = (c' (t) - y ' (t) ) · n(t) + (c(t) - y(t) ) · n' (t ) . 
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(This i s  similar to the first step i n  the proof of the proposition.)  Thus 

V = 1b A (t ) ( y ' (t ) · n (t) + (y(t ) - c(t) ) · n' (t )) dt . (4) 

Now assume the hypotheses of Theorem 2. Since P, is perpendicular to y ' (s) ,  we 
may take n(s) = y ' (s )  = T(s) ,  the unit tangent vector of y. The second factor in the 
integrand of ( 4) becomes 

T(s) · T(s) + (y(s) - c(s) ) · T' (s) = 1 - (c(s) - y(s) ) · K (s)N(s) = 1 - K (s)r (s ) , 

which proves Theorem 2. • 

The integrand of ( 4) has a nice interpretation. It can be written as 

d V  A (t)y ' (t ) · n(t ) dt + A (t) (y(t ) - c(t ) ) · n' (t ) dt . (5) 

Suppose that the infinitesimal motion of S, is purely translational . Then n' (t) = 0 and 
y ' (t ) f:. 0, and the infinitesimal volume swept out is given by the first term of (5) .  
On the other hand, suppose that S1 is infinitesimally rotating about some line in P, that 
passes through y(t) .  In this case n' (t ) f:. 0 and y ' (t ) = 0, and the infinitesimal volume 
swept out is given by the second term of (5) .  Thus (5) is the decomposition of d V  into 
purely translational and rotational parts from the perspective of the reference curve y. 
The distinguishing property of the centroid is that it is the unique choice of y(t) for 
which only the translational part matters in (5) .  

Higher dimensions and other geometries Interested readers may enjoy generaliz­
ing Theorems 1 and 2 to a moving, codimension-one, flat region sweeping out volume 
in JRn . The generalizations to spherical and hyperbolic geometries are less obvious, 
however. For a geodesic segment sweeping out area in S2 or H2, the analog of (2) is 

1b C (L (t) /2) 
A =  n(t ) · v(t ) dt , 

a 7T 
(6) 

where L, n, and v are the same as in (2) and C(r) is the circumference of a circle 
of intrinsic radius r [6] . For the unit sphere, in which the Gaussian curvature is 1 ,  we 
have C (r) = 2n sin r, and for the hyperbolic plane with curvature - 1  we have C (r ) = 
2n sinh r ,  but (6) is valid for all constant curvatures. The analogs of ( 1 )  and (6) in sn 
and Hn for n ::: 3, if they have been worked out, are necessarily more complicated 
because the notion of centroid (and more generally, center of mass) is less clear in 
these spaces. The definition and equivalence of the various formulations of centroid 
and center of mass in JRn depend on the affine structure of JRn , which is absent in sn and Hn . The first notion of center of mass for regions in symmetric spaces was 
developed by Cartan [2] , and has been generalized to other settings (see Berger [1 ] ;  
Galperin [9] gives an  extrinsic definition of  center of  mass in  sn and Hn) . The notion 
is more subtle than in JRn and, in particular, its dynamical properties do not extend (for 
example, the center of mass of a freely-moving rigid body does not necessarily follow 
a geodesic), and there are competing notions for a substitute concept in this setting 
[ 10] . 
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Dedicated to our friend John Selfridge 

Math trivia buffs recognize 1 729 as the number of the taxi that Hardy took to visit 
Ramanujan in the hospital. When Hardy complained that it seemed like a typical run 
of the mill number, Ramanujan countered that 1 729 is actually a "very interesting 
number," because "it is the smallest number expressible as the sum of two cubes in 
two different ways" (93 + 1 03 and 1 3 + 1 23 ) [5, pp. 1 2] .  Ramanujan could have really 
surprised his friend by saying something like this :  "Besides, Hardy, twice its square 
is the first number which can be written as the sum of three fourth powers in four 
different ways." 

It turns out that 2 x 1 7292 is the start of an infinite sequence of numbers with the 
following remarkable property : If R(n) denotes the number of ways that n can be 
written as the sum of three fourth powers, then R (n)  doubles every time we move on 
to the next number in the list. Consequently, there exist integers with an arbitrarily 
large number of representations as sums of three fourth powers . 

Our investigation utilizes a simple identity : 

( 1 )  

This equation i s  easily established b y  straightforward algebraic manipulation. Dickson 
referred to ( 1 )  as "Proth's  identity." First published in 1 878 [3, p. 657, footnote 227] ,  
i t  is an easy consequence of  Candido's  identity 

(2) 
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using the equation x2 + y2 + (x + y)2 = 2(x2 + xy  + y2 ) .  A Proof Without Words 
for (2) appears in the April 2005 issue of the MAGAZINE [9] . 

C. B .  Haldeman uses Proth's formula in a 1 904 article on biquadrate numbers in The 
Mathematical Magazine [4]-not to be mistaken for the journal containing the article 
you are now reading. (See footnote 1 96 in Dickson [3, p. 650] .)  One of the first journals 
of the American mathematical community, The Mathematical Magazine was founded, 
edited, and apparently typeset by the self-taught farmer-turned-mathematician, Dr. 
Artemas Martin. Sporadically published from 1 882 to 1 904, it was devoted to "ele­
mentary mathematics" and, along with The Ladies ' Diary, was an excellent source of 
challenging mathematical problems. 

In one of those strange mathematical coincidences, Ramanujan in his third note­
book wrote the same identical formula as Haldeman for representing a fourth power 
as a sum of five fourth powers. Berndt and Bhargava [1 ,  p. 647] speculated on the 
small l ikelihood that Ramanujan saw Haldeman's article in an obscure journal from 
America, a continent and an ocean away from his hometown in India. In any case, 
we may certainly speculate that Ramanujan was well aware of formula ( 1 ) and could 
have easily made the connection between Hardy 's taxicab number and sums of fourth 
powers . 

The quadratic polynomial (or form) on the right hand side of ( 1 ) is so essential to 
our argument that we give it a name: 

f(x ,  y) = xz + xy + yz . (3) 

It is clear that every time we represent a given number n as f(x ,  y), where x and y 
are integers , then we have a representation of 2n2 as a sum of three fourth powers : 
x4 + y4 + (x + y )4 • Analyzing f (x , y) leads us into the beautiful world of algebraic 
integers and binary quadratic forms. 

Quadratic forms have been extensively studied over the last three centuries by such 
prominent mathematicians as Fermat, Lagrange, Legendre, Gauss, and Minkowski . 
The discriminant of the general quadratic form ax2 + bxy + cy2 is d = b2 - 4ac; 
so f(x ,  y) has discriminant d = -3 .  Much is known about forms having a negative 
discriminant. For our purposes we need to establish three facts. 

The first fact will settle the question: What primes can be written in the form 
f(x ,  y ) ?  Completing the square transforms f(x ,  y) into a form without an xy term: 

(4) 

It follows from ( 4) that every integer of the form f (x , y) ,  where x and y are integers, 
can also be written as a2 + 3b2 , where a and b are half-integers whose numerators are 
either both even or both odd. The set 0 = {a +  b� : a ,  b E  4z  and a - b E  Z} is  
the ring of algebraic integers in the field obtained by adjoining � to the rationals. 
(The algebraic integers in the quadratic field Q(�) are just those elements of the 
field that satisfy a monic polynomial with integer coefficients. The algebraic numbers 
Q( v'=3) = { r + s r-3 : r, s E Q} form the field of quotients of the ring of algebraic 
integers 0. For an easy-to-understand definition, see the chapter on algebraic integers 
in Pollard and Diamond [10, pp. 74-79] .) 

Once we have � at our disposal, we are able to factor a2 + 3b2 as (a + 
�b) (a - �b) .  Thus a prime p can be written in the form a2 + 3b2 if and 
only if p factors in the ring 0. It is well known that the ordinary primes that factor 
in this  ring are the primes of the form 3k + 1 ,  together with the prime 3 itself, which 
factors as - (�)2 • Hence, 
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FACT 1 .  If p is a prime, then f(x , y) = p has a solution in integers if and only if 
p = 3 or p = 1 (mod 3) .  

The next easily verified fact shows that if  two numbers have representations of  the 
form f (x , y ) ,  then so does their product. 

FACT 2 .  

f (u ,  v)f (x ,  y) = f (ux - vy ,  uy + vx  + vy) . (5) 

It follows from Facts 1 and 2 that a product of primes of the form 3k + 1 has a 
representation of the form f(x ,  y) .  Our third fact tells us how to count the number 
of proper representations of such a product if it is squarefree. (To say a representa­
tion f(x ,  y) is proper means that x and y are relatively prime.)  A discussion can be 
found in the chapter on Quadratic Forms in Davenport's interesting book, The Higher 
Arithmetic [2, pp. 146-147] .  

FACT 3 .  Given t distinct primes p1 , p2 , . . •  , Pr . all congruent to 1 mod 3 ,  the num­
ber R(n) of proper representations of n = P I P2P3 · · · p1 by the form f (x ,  y) is the 
number of automorphs (soon to be defined) of f(x ,  y) times the number of solutions 
to the congruence 

x2 = -3 (mod 4n) 

where x lies in the interval 0 :::; x < 2n . 

(6) 

An automorph is a unimodular substitution that transforms a form into itself. A uni­
modular substitution is a linear change of variables X = ax + by, Y = ex + dy, where 
a, b, c, and d are integers satisfying ad - be = 1 .  The form f(x ,  y) of discriminant 
-3 has the following six automorphs :  

i .  X = x , Y = y  lV. X =  -X - y ,  Y = x 

1 1 .  X = -x ,  Y = - y v. X = y, Y =  -x - y 

iii. X = X + y ,  Y =  -X Vl. X = -y ,  Y = x + y  

Observe that automorph (iii) generates the other five; a second application of (iii) gives 
automorph (v) , a third application results in (ii), and so on. Possessing six automorphs 
makes -3 the record holder among all negative discriminants . The discriminant d = 
-4 has four automorphs and all other negative discriminants have just the first two 
automorphs (i) and (ii) in the above list. It is also known from elementary number 
theory that the congruence (6) has exactly 21 solutions in the prescribed interval . 

As mentioned earlier, once we have a representation of f(x ,  y) = n ,  then the triple 
(x , y ,  x + y) satisfies x4 + y4 + (x + y )4 = 2n2 • These fourth power representations 
of 2n2 fall into groups of twelve : the six automorphs of f (x , y) together with the six 
automorphs of f (y ,  x ) .  The corresponding 12 triples (X, Y, X +  Y) can be obtained 
from each other by simply permuting terms or changing signs, and hence they repre­
sent equivalent variations of ( 1 ) . Note that among the 1 2  equivalent representations, 
we can always find one pair (x , y)  such that 0 < x < y. It follows that if n is a product 
of t distinct primes of the form 3k + 1 ,  then 2n2 has 21- 1 essentially different repre­
sentations of the form x4 + y4 + (x + y)4 • Every time we add another prime factor, 
we double the number of representations . Since there are infinitely many primes of the 
form 3k + 1 ,  we have proved 
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THEOREM 1 .  For every positive integer m ,  there is an integer n with at least m 
proper representations as the sum of three fourth powers. 

We can use (5) to generate all 2t- l solutions. Express p1 = f(u ,  v) and p2 = 
f (x , y ) .  To get two representations of p1 p2 , apply (5) first with f(u ,  v) f (x , y) 
and again with f(u ,  v) f (y , x) . Repeat this process to obtain four representations of 
P1 P2P3 ,  etc . 

The 1729 example Let n = 7 · 1 3  · 1 9  = 1 729. By inspection, the primes 7, 1 3 ,  and 
1 9  have the following representations : 7 = f ( I ,  2) , 1 3  = f ( l ,  3 ) ,  and 1 9  = f(2, 3) .  
(We wi l l  always select the representation f (x , y) where 0 < x < y .) Using (5 )  with 
the representations of 7 and 1 3 ,  we find 

f ( 1 ,  2) . f( 1 ,  3)  = f( -5 ,  1 1 ) .  

Applying automorph (iii) to x = 1 1 , y = - 5  gives X = 5 ,  Y = 6 .  To get a second 
representation of 9 1 ,  use f (3 ,  1 )  instead of f ( 1 ,  3) in (5) :  

f( 1 ,  2) . f (3 ,  1)  = f( l , 9) . 

The pair (x ,  y) = ( 1 ,  9) is already in the desired form 0 < x < y .  Next we multi­
ply the two representations 9 1  = f(5 ,  6) and 9 1  = f ( 1 ,  9) by f(2, 3) and f (3 ,  2) , 
respectively, and apply the appropriate automorphs to generate the four solutions to 
f(x ,  y) = 7 · 1 3  · 1 9 listed in the table below. 

# X y f (x , y) 

I .  8 37 1 729 
2. 3 40 1 729 
3 .  23 25 1 729 
4. 1 5 32 1 729 

Hence, 2 · 1 7292 can be written as a sum of three fourth powers in four ways: 

2 . 1 7292 = 84 + 374 + 454 = 34 + 404 + 434 

= 234 + 254 + 484 = 1 54 + 324 + 474 . 

REMARK 1 .  In general, if n = p�1 p;2 • • • p�' , where the distinct primes p; are all 
of the form 3k + 1 ,  then the number of different representations of n by f (x ,  y) is 

r ee l + 1 ) (e2 + 1 )  . . .  (et + l ) l 
R(n) = I 2 ' (7) 

where I x l means the ceiling of x, that is, the least integer � x. (Allowing 3 as a prime 
divisor does not change this count, that is, R(3en) = R(n) ,  the number of distinct rep­
resentations of n . ) The number of proper representations of n ,  however, still remains 
2'- 1 • Hardy and Wright [6, p. 330] utilize this idea by considering powers of the prime 
7 in their proof of a version of Theorem 1 .  The method we present is a generalization, 
and at the same time, a simplification of their argument. 

REMARK 2 .  In the mid- 1 960s Lander and Parkin [7] implemented a computer 
search for identities of the form a4 + b4 = c4 + d4 and a4 + b4 + c4 = d4 + e4 + f4 • 
Their search was extended to other powers a year later with the collaboration of Self­
ridge [8] . The first example they found of a number expressible as a sum of two fourth 
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powers i n  two different ways, 

answers Hardy's  query when he asked Ramanujan whether he knew "the solution of 
the corresponding problem for fourth powers" as the 1 729 solution for cubes. Ramanu­
j an 's  reply was "that he knew no obvious example" [5, p. 1 2] .  In their original paper 
[7, p. 45 1 ] ,  Lander and Parkin found that the first number to have three representations 
as the sum of three fourth powers is 

8 1 1 538  = 294 + 1 74 + 1 24 = 284 + 2 1 4 + 74 = 274 + 234 + 44 . 

Observe that 8 1 1 538 = 2(72 
• 1 3)2 and that with e 1 = 2, e2 = 1 ,  the formula (7)  pre­

dicts a total of 3 essentially different representations of 72 
· 1 3 .  These three represen­

tations are easily obtained by applying (5) to the representations of 7 and 1 3 ,  as we did 
in the 1 729 example. 

REMARK 3 .  Representations x4 + y4 + z4 need not, of course, satisfy z = x + y .  
For example, 3750578 = 2 · 1 3  · 144253 can b e  written a s  the sum o f  three fourth 
powers in three different ways:  1 4 + 244 + 434 , 34 + 74 + 444 , and 64 + 3 1 4 + 4 1 4 , 
and in each expression the sum of the first two numbers does not equal the third. It is 
the only such example smaller than 2 x 1 7292 . 

REMARK 4 .  Our fundamental equation, ( 1 ) , gives us infinitely many solutions to 
the diophantine equation x4 + y4 + z4 = r2m + s2m .  Just take n = (p 1 p2 · · · p1 ) m ,  
where each P i  is congruent to 1 mod 3 ,  and let r = s = p1 • • • p1 • 

The calculations discussed in this article were performed by a computer. The ex­
tensive calculations of Ramanujan that stoked his prodigious imagination, leading to 
many volumes of formulas and theorems, were all ,  of course, done by hand. It is inter­
esting to speculate whether a 2 1 st century computer, together with a symbolic math­
ematical software system, would have enhanced (or hindered) the discoveries of this 
most remarkable mathematician. 

Simcha Brudno, a Holocaust survivor, philosopher, and mathematician with ex­
ceptional intuition, passed away on June 9, 2006, at the age of 82. 
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Ramanujan [5, p. 34 1 ]  makes the amazing claim that if integers a11 , bn , C11 are defined 
by 

then they satisfy 

1 + 53x + 9x2 
'"""' anX11 = ---------:----:-� 1 - 82x - 82x2 + x3 ' n::::: O 

L 2 - 26x - 1 2x2 
bnxn = , 1 - 82x - 82x2 + x3 

2 + 8x - 10x2 
'"""' CnXn = ' � 1 - 82x - 82x2 + x3 

( 1 )  

(2) 

Two proofs of this claim and a plausible explanation of how Ramanujan may have 
been led to it have been given by Hirschhorn [1, 2] . 

In this note, we give a new and complete explanation in the light of an observation 
of Maurice Craig and are led to an alternative formulation. Indeed, we shall show that 
the sequences {an } ,  {bn } ,  and {en } are given by 

( an ) ( 63 
bn = 64 
Cn 80 

��: 
=
��
)

n 
( � ) . 

1 3 1  -85 2 

We begin with Ramanujan's  identity [3, p. 286; 4, p. 326] , 

(3a2 + 5ab - 5b2) 3 + (4a2 - 4ab + 6b2) 3 + (5a2 - 5ab - 3b2) 3 

= (6a2 - 4ab + 4b2 ) 3 • 

(3) 

(4) 

As observed by Maurice Craig (in a personal communication), if in (4) we put 
a = u + v, b = u - 2v, divide by 27, and transpose one term, we obtain 

(u2 + 7u v - 9v2) 3 + (2u2 - 4uv + 1 2v2 )3 

= (2u2 + 10v2) 3 + (u2 - 9u v - v2) 3 . (5) 
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(Previously, Hirschhorn supposed that (5) was Ramanujan's  starting point, even though 
he could not find it in Ramanujan's  work.) 

Suppose we now, as Ramanujan likely did, recall that the sequence {hn } defined by 

has the property (easily proved by induction) 

Set u = hn+ [ ,  v = hn in (5), and define an , bn , Cn by 

an = u2 + 7uv - 9v2 = h�+ l + 7hn+ ! hn - 9h� , 

bn = 2u2 - 4u v + l 2v2 = 2h;,+ l - 4hn+ t hn + 1 2h� , 

Cn = 2u2 + 10v2 = 2h�+ l + I Oh� . 

Then (5), (7) , and (8) give 

Our next step is to show that 

( 63 
64 
80 

!�: =�� ) ( �: ) ' 
1 3 1  -85 Cn 

from which (3) follows. 
We have 

an+ ! = h�+2 + 7hn+2hn+ ! - 9h�+ l 

= (9hn+ l + hn )2 + 7 (9hn+ l + hn )hn+ ! - 9h�+ ! 
= 1 35h�+ l + 25hn+ ! hn + h;, 

= 63 (h;,+ l + 7hn+ ! hn - 9h� ) + 104(2h�+ l - 4hn+ ! hn + 1 2h;,) 

- 68(2h�+ l + I oh;, ) 

= 63an + 104bn - 68cn . 

The remaining two relations may be proved in similar fashion. 
We now show that the an , bn , Cn satisfy ( 1 ) .  
Set 

A =  L anx" , B = L bnxn , C = L cnx" . 
n�O n�O n�O 

It follows from the above relations that 

A =  1 + x (63A + 104B - 68C) , 
B = 2 + x (64A + 1 04B - 67C) ,  
C = 2 + x (80A + 1 3 1 B - 85C) .  

I f  w e  solve these equations for A,  B ,  and C, w e  obtain ( 1 ) .  

(6) 

(7) 

(8) 

(9) 
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Note that if in (3) we allow n to be negative, it i s  still true that 

a� + b� = c� + ( - 1 t ,  

and these sequences are also given by Ramanujan [5, p.34 1 ] .  
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Ram sey's Th eorem I s  S h a rp 

SO LOMO N W. GOLOMB 
Department o f  E l ectr ical  Engi neer ing Systems 

U n iversity of Southern Cal i forn ia  
Los Angeles, CA 90089 

Ramsey 's Theorem [1] asserts that if the (�) = 15 edges of K6, the complete graph 
on six points, are colored using two colors , there will be a triangle (a K3 subgraph of 
K6) with all three of its edges having the same color. This is sometimes called "the 
party problem," because if you select any six people at a party, it is guaranteed that 
either three of them will all know each other, or there will be three of them no two of 
whom know each other. To see the equivalence, represent each of the six people by 
a point, connect two points with a red line if the two people represented know each 
other, but by a blue line if they don't .  Then by Ramsey's  Theorem there will either be 
a solid red triangle (three mutual acquaintances) or a solid blue triangle (three mutual 
strangers).  

The purpose of this note is to present a visually striking proof that if any one of 
the 1 5  edges of K6 is removed, the resulting graph (with 14 edges connecting the six 
points) can have all its edges colored, using two colors, without creating a solid-color 
triangle. 

We first exhibit a two-coloring of the {;) = 10 edges of K5 that creates no solid­
color triangle: 

5 

3 4 
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(Our two colors are shown as solid and dotted lines. In this figure, there is a solid 
pentagon and a dotted pentagon, and clearly no single-color triangle.) 

We now adjoin a sixth point in the middle of the K5 -figure just pictured, connecting 
it to the previous five points with two solid lines and two dotted lines . 

.... 
.... 

....
.... 

.... 
.... 

.... 
.... 

....
....

.... 
5 

3 4 

Voila ! 
In addition to pentagons (5-cycles), there are now also quadrilaterals (4-cycles) in 

each of the two colors, but still no triangles (3-cycles). The only edge which is missing 
from the complete graph, K6 , on these six points is the edge from 1 to 6. 

In terms of the party problem, if only one of the 1 5  pairs (among 6 people) refuses to 
acknowledge whether or not they are acquainted, we can no longer promise to exhibit 
a trio of mutual acquaintances or mutual strangers . 

One generalization of Ramsey's  original problem is :  What is the smallest �ositive 
integer R = Rc such that, if the complete graph KR on R points have all ( 2 ) of its 
edges colored in c colors, a solid color triangle is guaranteed to exist. The exact value 
of Rc is known for only a few small values of c, such as R2 = 6 (the original Ramsey 
Theorem) and R3 = 1 7 .  

For a context for R3 = 17 ,  suppose that i n  a certain high school class, each pair 
of students are either mutual friends, mutual enemies, or mutually indifferent. (While 
these relationships are symmetric, they are not assumed to carry over to third parties . 
The friend of a friend can be an enemy; the enemy of an enemy need not be a friend.)  
Then in any collection of 17 students there is certain to be a trio of either mutual 
friends, mutual enemies, or people who are mutually indifferent. 

The following remarkable generalization of our triangle-free 2-coloring when one 
edge is removed from K6 was observed by Herbert Taylor. 

THEOREM . For every c ;::: 2, when a single edge is removed from the complete 
graph on Rc points, what remains can be c-colored without forming any solid-color 
triangles. 

Proof We do not need to know the actual value of Rc to prove this theorem ! By the 
definition of Rc . the complete graph on Rc - 1 points can have all its edges colored 
using c colors in such a way that no solid-color triangle is formed. Start with this 
coloring of the complete graph on Rc - 1 points . Designate any one of these points 
as P, and introduce a new point P' (the clone of P) . Connect P' , with edges, to each 
of the original points except P, and color the edge from P' to Q with the same color 
as the edge from P to Q, for every point Q except P and P' . If a solid-color triangle 
were formed, it would already have existed in the previous graph with P instead of P' . 
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Since there i s  no edge between P and P' , there can be no triangle using both P 
and P' ;  so our new graph with Rc points lacks only the edge from P to P' to be the 
complete graph on Rc points, and it is edge-colored in c colors with no solid-color 
triangles. • 

Note that our illustration of a two-coloring of K6 with one edge missing, having no 
solid-color triangles, is a special case of this general result, where the new point, 6, is 
the clone of I .  

Since K17 has C;) = 1 36 edges, we can 3-color 1 35 of these without forming a 
solid-color triangle ! 

We can also clone more than one point. For example, it is sufficient to remove only 
five of the 45 edges of K 10 so that the remaining 40 edges can be 2-colored without 
forming a solid-color triangle. To achieve this, start with the triangle-free 2-coloring 
of the edges of K5 • We then clone each of the five original points of K5 , sequentially, 
adjoining one at a time, following the procedure in the proof of the Theorem. When 
we are done, the only edges missing from K10 are the five that connect each of the 
original points to their clones . 

If we try to use this procedure when adjoining more than one clone to the same 
original point, all edges connecting the points in the same clone set must be omitted. 
For example, we can 2-color all but 1 5  of the I 05 edges of K 1 5 without forming a 
solid-color triangle, by adjoining two clones to each of the five original points of K5 . 

When we use only one color, the Ramsey number R1 is 3 .  (We can color the single 
edge of K2 , but not all three edges of K3 , using only one color, without forming a 
solid-color triangle.)  The reader is encouraged to experiment with adjoining clones 
to the two original points of K2 , using only one color, and avoiding triangles, as just 
described. (What results are the complete bipartite graphs connecting the two clone 
sets, and these graphs are all triangle-free.)  

Graham, Rothschild, and Spencer [2] give an extensive treatment of generalizations 
of Ramsey's  Theorem. 

R E F E R E N C ES 
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Where the Camera Was, Ta ke Two 

A N N A L I SA CRAN N E L L  
Fra n k l i n  & Marsh a l l  Co l lege 

Lancaster, PA 1 7604 
a n n a l isa .cra n n e l l ®fandm .edu 

In the very nice article "Where the camera was" [1 ] ,  Byers and Henle approximated 
the position of a photographer from geometric clues in an old photograph of John M. 
Greene Hall at Smith College. Here, we give an approach to the problem that is slightly 
more geometric . 

We will make one simplifying assumption that the original article did not make: that 
the photo was not cropped, meaning that the center of the photograph was the center 
of the photographer's  aim. Using the diagonals of the rectangle (see FIGURE 1 ) , we 
can determine where to aim our own camera to best recreate the original photograph. 



VOL. 79, NO. 4, OCTOBER 2006 307 

Figure 1 Side-by-side pictures showing the center of the photo and the two vanishing 
points. 

The "x" in Byers and Henle's photograph of Greene Hall appears above the doors in 
the building; this hints that the camera was pointed slightly upward. Nonetheless, we 
will assume (as did Byers and Henle) that the camera was aimed horizontally, that is, 
parallel to the ground; the error introduced by this assumption is not very large. 

As Byers and Henle noted, the images of lines that are parallel to each other but 
not parallel to the image plane meet at a single point in the image plane. By looking at 
the image, we can measure the distance from the center (X) to the left and to the right 
vanishing points; let us call these distances l and r respectively. If we imagine that the 
picture plane is correctly positioned in space, so that the image lines up with reality 
for the viewer, then these points, called the vanishing points, occur at the places on the 
image plane where the viewer's line of sight is parallel to the original lines (see for 
example Theorem 2 of [2]). We illustrate this phenomenon in FIGURE 2. 

Figure 2 The lines of s ight to the vanishing points are parallel to the edges of the build­
ing. 

From FIGURE 2, we can tell that the photographer, pointing at the "X", stands 
somewhere on a line that makes an angle () with the front of the building, where 
tan(())  = Jrll. (Note that the altitude of the triangle in FIGURE 2 is Jrl). One re­
markable aspect of this calculation is that it does not depend on the dimensions of the 
building, but rather on the reasonable assumption that the visible comer of the building 
is a right angle. 

How far back along this line does the photographer stand? At this point, we have 
to put on our coats and shoes and go outdoors to measure something on the actual 
building. Here we can, as Byers and Henle did, use similar triangles. 

Because we assume that the camera is aimed horizontally, the picture plane is ver­
tical, and so the image of any vertical line is parallel to the original line. Therefore, we 
can use vertical line segments to construct similar triangles. If the height of a window 
on the building is W and the height of its image is w, then we get DId = WI w, where 
d is the distance of the photographer from the picture plane, and D-the quantity we 
want-is the distance from the photographer to the spot marked "X". Conveniently, 
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-

----- 0 -----

Figure 3 Using s i m i lar triangles with one vertex at the camera and opposite edge at 
the bu i ld ing. Note that d, D, and ll.D are measured horizonta l ly in the d i rection of the 
photographer, not perpendicu larly to the bu i ld i ng. 

my "photograph" has the window aligned vertically with the "X"; it also has a porch, 
which gives us a second set of similar triangles with a second equation: 

D - tJ. D  

d 

p 
= -

p 

In each of these two formulas, the uppercase letters are measured in the real world; 
the lowercase letters are measured from the photograph. Solving these two equations 
yields 

D = 
tJ. Dp W  

p W - P w  

That is, we can determine the distance of the photographer from the "X" by taking 
three measurements on the building and two more measurements on the picture itself. 
As Byers and Henle remarked, such a computation is very sensitive to small changes 
in the measurement of w, the central vertical measurement in the photo. 
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Earlier Citation for Irrational Square Roots 

Peter Ungar writes to report that David M. Bradley of the University of Maine 
in Orono has called to his attention pp. 4-5 of Conjecture and Proof, by Miklos 
Laczkovich, (2001 )  Mathematical Association of America, where the proof 
presented in Ungar's note "Irrationality of Square Roots," this MAGAZINE, 79 
(2006), 147-148, can already be found. 
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Proposa l s  
To be considered for publication, solutions should be received by March 7 ,  2007. 

1751.  Proposed by Iliya Bluskov, University of Northern British Columbia, Prince 
George, BC, Canada 

Let k1 , k2 , • • •  , kn be integers with ki > 2, i = 1 ,  2, . . .  , n ,  and let N = L7= 1 (� ) .  
Prove that 

1752. Proposed by John Sternitzky and Robert Calcaterra, University of Wisconsin 
Platteville, Platteville, WI. 

Let lR be the real line with the standard topology. Prove that every uncountable 
subset of lR has uncountably many limit points . 

1753. Proposed by John C. George, Eastern New Mexico University, Portales, NM. 

Let n be a positive integer and let Sn be the set of all positive integers whose (base 
ten) digit sum is n. Determine the convergence or divergence of the series 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for tbis MAGAZINE. Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames lA 500 1 1 ,  or mailed electronically (ideally as a Jb.T8( file) to 

ehj ohnst @ i astate . edu. All communications should include the reader's name, full address, and an e-mail 

address and/or FAX number. 
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1754. Proposed by Mihaly Bencze, Siicele-Negyfalu, Romania. 

Let a 1 ,  a2 , • • •  , an be positive real numbers . Prove that 

1755. Proposed by Michel Bataille, Rouen, France. 

Let a ,  b ,  c > 0 with b > c. Prove that, as n -+ oo ,  

(a + b)a+b (2a + b)2a+b . . .  (na + b)na+b 
--'------.,...----=-------,-� � A.(nata+fl '  
(a + c)a+c (2a + c)2a+c . . .  (na + c)na+c 

for some positive real numbers A. ,  a , and {3 .  

Qu ick ies 
Answers to the Quickies are on page 3 1 6. 

Q963. Proposed by H. A. ShahAli, Tehran, Iran. 

For positive integer k :::: 3, determine the range of 

a 1 CXz ak 
--- + + · · · +  ' 
a 1 + CXz CXz + a3 ak + a 1 

as a 1 ,  a2 , . . .  , ak take on positive real values .  

Q964. Proposed by lung-lin Lee, University of Illinois, Champaign- Urbana, IL. 

Let N be the set of natural numbers and let SN be the set of all permutations on N. 
Prove that the cardinality of SN is same as the cardinality of the real numbers . 

So l ut ions  
Condition for a congruence October 2005 

1726. Proposed by Jerry Metzger, University of North Dakota, Grand Forks, ND. 

Let a and j be positive integers with a :::: 2. Show that there is a positive integer n 
such that an = -j (mod aj + 1 ) if and only if j = ak for some k :::: 0. 

Solution by Northwestern University Math Problem Solving Group, Northwestern Uni­
versity, Evanston, IL. 

We first assume that j = ak for some k :::: 0. Note that aj = - 1 (mod aj + 1 ) .  
Thus, if j = ak ,  then aj+k = - j (mod aj + 1 ) , so for n = j + k = ak + k we have 
the desired congruence. 

Next assume that there is a positive integer n for which an = -j (mod aj + 1 ) .  
Write n = qj + k where q and k are nonnegative integers with 0 .::=: k < j .  We then 
have 

an = aqj+k = (- 1 )qak = ±ak (mod aj + 1 ) .  

Consequently, j = :rak (mod aj + 1 ) . 
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If j = ak (mod aj + 1 ) ,  then because 1 .:::; j ,  ak .:::; aj , we must have j = ak . 
If j = -ak (mod aj + 1 ) ,  then j = aj - ak + 1 .  However 

so j < aj - ak + 1 ,  that is,  we cannot have equality. 
Thus, the only possibility is j = ak .  

3 1 1 

Also solved by Michel Bataille (France), Robert Calcaterra, John Christopher, Chip Curtis, Hugh M. Edgar 
(Canada), Fejentaltiltuka Szeged Problem Solving Group (Hungary), Dennis Gressis, Enkel Hysnelaj (Australia), 
Joel Iiams, Tom Leong, Byron Schmuland (Canada), Albert Stadler (Switzerland), Marian Tetiva (Romania), Paul 
Weisenhorn (Germany), Yan-loi Wong (Singapore), and the proposer. 

Chain addition October 2005 

1727. Proposed by Jody M. Lockhart and William P. Wardlaw, U. S. Naval Academy, 
Annapolis, MD. 

Chain addition is a technique used in cryptography to extend a short sequence 
of digits, called the seed, to a longer sequence of pseudorandom digits . If the seed 
sequence of digits is a 1 , a2 , . . •  , an , then for positive integer k, an+k = ak + ak+ I 
(mod 1 0) ,  that is, an+k is the units digit in the sum ak + ak+ I · Suppose that the seed 
sequence is 3 ,  9, 6, 4. Prove that the sequence is periodic and find, without the use of 
calculator or computer, the number of digits in the sequence before the first repetition 
of 3 ,  9, 6, 4. 

Solution by Robert Calcaterra, University of Wisconsin Platteville, Platteville, WI. 
We prove that the sequence has period 1 560. Let X1 be a fixed column vector in 

Z4 . If for positive integer k we have Xk = (a , b ,  c ,  d)1 , then define Xk+ I  = (b ,  c ,  d ,  
a + b)1 • Now consider the 4 x 4 matrix 

0 0) 
1 0 
0 1 . 

0 0 

Then Xk+ I  = AXk for all positive integer k .  Note that the characteristic polynomial of 
A is p (x)  = x4 - x - 1 .  

Now view p as an element of the ring Z5 [x] .  Because p has no zeros in Z5 , it has 
no linear factors in Z5 [x] .  If 

p (x)  = (x2 + ax + b) (x2 + ex + d) , 

then ac + b + d = 0, c = -a, and ad + be = - 1 .  Thus a (b - d) = 1 ,  which implies 
that a i= 0 and b i= d. Because bd = 4, we must have {b ,  d} = { 1 ,  4 } .  It follows that 
b + d = 0 and then that -a2 = 0, which is impossible. Therefore, p is irreducible in 
Z5 [x] .  Now let F be the field extension Z5 [a] where a is a zero of p .  Then 1 ,  a , a2 , a3 
is a basis for F over Z5 . 

Because a4 = a + 1 and the function x --+ x5 is an automorphism of F, it follows 
that 

a20 = (a + 1 )5 = a5 + 1 = a2 + a + 1 

a 1 00 = a 10 + a5 + 1 = (a2 + a)2 + (a2 + a) +  1 = 2(a3 + a2 + a + 1 )  

a22 = (a2 + a + 1 )a2 = a3 + a2 + a + 1 .  
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Hence a78 = 2 and a3 1 2 = 1 .  Moreover, 

a24 = (a2 + a + l ) (a + 1 )  =F I 

a 1 04 = 2(a3 + a2 + a + l ) (a + 1 )  =F I 

Therefore o(a78) = 4, o(a24) = 1 3 ,  and o(a 1 04) = 3, where o (w) is the order of w in 
the multiplicative group of F.  Thus o(a) is a multiple of 3 · 4 · 1 3  = 1 56 and a divisor 
of 3 1 2 . Because a 1 56 = 4, we conclude o(a) = 3 1 2. If we view the entries of A as 
elements of Z5 , then a, a5 , a25 , and a 1 25 are the distinct eigenvalues of A and A is 
diagonalizable. Because the matrix equation AkY = Y will have a nonzero solution if 
and only if I is an eigenvalue of A k , it follows that the sequence defined by Y k = A ky 1 
will have period 3 1 2  whenever Y1 is a nonzero vector in (Z5 )4 .  

Now view the coefficients of  p and the entries of  A as  elements of  Z2 • Because 
x ,  x + I ,  and x2 + x + I are the only linear and irreducible quadratic polynomials over 
Z2 and none is a factor of p (x) , we conclude that p (x)  is irreducible in Z2 [x ] .  If f3 is a 
zero of p ,  then the field Z2 [{J] has 1 6  elements generated by the basis { 1 ,  {3 , {32 , {33 } 
over Z2 • Because the multiplicative group of this field has order 1 5  and {33 =F I and 
{35 = {32 + f3 =F I ,  it follows that o({J) = 1 5 .  Therefore, the line of reasoning used 
earlier shows that the sequence defined by Wk = AkW1 will have period 1 5  whenever 
W1 is a nonzero vector in (Z2)4 .  

Combining the results, we conclude that the period of  the given sequence is the least 
common multiple of 3 1 2  and 1 5 ,  that is 1 560. 

Also solved by John Christopher, Chip Curtis, G.R.A.20 Problem Solving Group (Italy), Richard F. Me Coart, 
Kim Mcinturff, Albert Stadler (Switzerland), Paul Weisenhorn (Germany), Doug Wilcox, and the proposers. There 
were two incorrect submissions. 

A 3n-gon inequality October 2005 

1728. Proposed by Jose Luis Dfaz-Barrero, Universitat Politenica de Catalunya, 
Barcelona, Spain. 

Let A 1 A2 • . •  A3n be a regular polygon with 3n sides, and let P be a point on the 
shorter arc A 1 A3n of its circumcircle. Prove that 

L PAn+k L -- + > 4n 2 • 
( n ) n ( } } ) k= l k= I P Ak P A2n+k -

Solution by Tom Leong, Brooklyn, NY. 
For k = 1 ,  2, . . .  , n ,  quadrilateral P AkAn+kA2n+k is cyclic, so by Ptolemy's theo­

rem, 

Furthermore, triangle AkAn+kA2n+k is equilateral, so ( 1 )  reduces to 

Summing over k and then applying the arithmetic-harmonic mean inequality gives 

11 n n 1 1 ( ) - 1 
L PAn+k = L (PAk + PA2n+k ) � 4n2 L (- + ) , 
k= l k= l k=l P Ak P A2n+k 

which is equivalent to the desired result. 
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Also solved by Michel Bataille (France), J. C. Binz (Switzerland), Brian Bradie, Robert Calcaterra, Enkel 
Hysnelaj (Australia), Northwestern University Math Problem Solving Group, Albert Stadler (Switzerland), Michel 
Vowe (Switzerland), Paul Weisenhorn (Germany), and the proposer. 

Products of odd numbers October 2005 

1729. Proposed by Brian T. Gill, Seattle Pacific University, Seattle, WA. 
For positive integer k, let ck denote the product of the first k odd positive integers, 

and let c0 = 1 .  Prove that for each nonnegative integer n ,  

Solution by JPV Abad, San Francisco, CA. 
Our proof uses the following four identities, 

k ! (2k) 
Ck = 2k k ' 

(k - �) 
= 

_1 (2k) 
k 22k k ' 

and 

The first three are easily verified and the last follows from Vandermonde' s  identity. 
Applying these results in the order presented we find 

= Cn , 

where we applied the first two of the given identities in obtaining the last equality. 
Also solved by Michel Bataille (France), J. C. Binz (Switzerland), Con Amore Problem Group (Denmark), 

Chip Curtis, Knut Dale (Norway), Charles Diminnie and Roger Zarnowski, Michael Goldenberg and Mark Ka­
plan, G.R.A.20 Problem Solving Group (Italy), Eugene A. Herman, Enkel Hysnelaj (Australia), Tom Leong, John 
Mangual, Daniel A. Morales ( Venezuela), Rob Pratt, Edward Schmeichel, Nicholas C. Singer, Chris Smith, A lbert 
Stadler (Switzerland), Marian Tetiva (Romania), Michael Vowe (Switzerland), Paul Weisenhorn (Germany), Chu 
Wenchang (Italy), and the proposer. 

A bounded transformation October 2005 

1730. Proposed by Steven Butler, University of California San Diego, La Jolla, CA. 
Let A and B be symmetric, positive semi-definite matrices such that A + B is pos­

itive definite, and let I I Y I I  denote the usual 2-norm of the vector y. Prove that for all 
X =/= 0, 
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Solution by Eugene A .  Herman, Grinnell College, Grinnell, IA. 
Rather than assuming that A + B is positive definite, we make the weaker assump­

tion that N(A) n N(B) = {0} , where N(C) denotes the null space of a matrix C .  

LEMM A .  If A i s  symmetric, positive semi-definite, then for all x 

( 1 )  

with equality if and only ifx E N(A), in which case (I - A) (I + A) - 1 x  = x. 

Proof The matrix A can be diagonalized and its eigenspaces are mutually orthog­
onal . Furthermore, the matrices I - A and (I + A) - 1 have the same eigenspaces as A .  
Thus, i f  x i s  an eigenvector o f  A with eigenvalue A. ,  then 

1 - A. 
{I  - A) (I + A ) - 1 x = -- x. 

1 + A. 
(2) 

In particular, if x E N(A) (the eigenspace associated with the eigenvalue 0), then 
(I - A)  (I + A) - I x = x and equation ( 1 ) follows.  The orthogonal complement N (A )_l  
is the s um of the eigenspaces associated with the nonzero eigenvalues of  A .  We con­
struct an orthonormal basis {e 1 , e2 , . . .  , ek } of the orthogonal complement by taking an 
orthonormal basis of each eigenspace whose associated eigenvalue is nonzero and then 
forming the union of these bases . Let {A.k } be the corresponding (positive) eigenvalues 
of A .  Thus, if x E N(A)_l ,  we may write x = L�= I cjej . and therefore by equation 
(2) 

If x =ft 0 then, since I :��� I < 1 for j = 1 ,  . . .  , k, we conclude that 

k 
II {I - A) (I + A) - 1 x l l 2 < L lcj l 2 = l l x \ 1 2 , 

j= i  

{3)  

and hence that I I  {I - A)(I  + A)- 1 x l l  < l l x \ 1 . From equation (3) ,  note also that (I ­
A ) ( I  + A )- 1 x E N(A) _l .  Finally, if x is any vector not in N(A) ,  we write x = x1 + x2 , 
where x 1  E N(A) and x2 E N(A ) _l .  Since x2 =ft 0, we obtain 

II {I - A ) ( I  + A ) - 1 x l l 2 = l l x 1 + (I - A) (I  + A) - 1 x2 i 1 2 

So II {I - A ) (I + A) - 1 x l l  < l l x \ 1 . 

= l l xi i i 2 + I I  {I - A ) ( I  + A) - 1 x2 i 1 2 

< l l x i i i 2 + l l xz l l 2 = l l x \ 1 2 . 

We now use the lemma to prove the main result. If x ¢. N(B),  then 

On the other hand, if x E N (B)  and x ¢. N (A) ,  then 

1 1 ( 1 - A ) (/ + A) - 1 (/ - B ) (/ + B) - 1 x l l  = I I ( ! - A ) (/ + A) - 1 x l l  < l l x l l . 
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Further extension. The above result extends easily as follows .  Let { A 1 , A2 , 
. . .  , Ak } be symmetric, positive semi-definite matrices such that n�= 1 N(Aj ) = {0} . 
Then, for all x =F 0, 

Also solved by Michel Bataille (France), Brian Bradie, Robert Calcaterra, Gerard Letac (France), Chi­
Kwong Li, and the proposer. 

A combinatorial identity April 2005 

1718. Proposed by David Callan, Madison, WI. 

Let k , n be integers with 1 ::::; k ::::; n .  Prove the identity 

I: (k --:- 1) (n - (� --:- 1 )) 2k-i- l 
= I: (k --:- 1) (n - i) · i=O l k l i=O l k 

Solution by I. William Moser, McGill Univeristy, Montreal, Quebec, Canada. 
We prove the following more general identity : for integers 0 ::::; k ::::; n ,  1 ::::; m ::::; n ,  

t (":) (n � rr:) 2m-i = t (�) (n - j) 
i=O l k l j=O ] k 

The case m = k - 1 is the identity in the problem statement. 

( 1 )  

We prove ( 1 )  b y  counting, i n  two different ways, the cardinality of the set of words 
of length n using the alphabet { A ,  B ,  C} and satisfying the condition: precisely k of 
the letters are A, and all of the letters B must be among the first m letters (reading 
from left) . 

First count: in subsets according to the number i of A ' s  among the first m letters of 
the word. Construct these words as follows.  Place m symbols X in a row and following 
them n - m symbols Y .  

X X  . . .  X X Y Y  . . .  Y Y  
'-,.--' '-,-' m n-m 

(2) 

Choose i of the m X' s  (this can be done in (7) ways), replace each of these chosen 
X's  by A and replace each of the other m - i X's  by B or C (this can be done in 
2m-i ways). Then choose k - i of the n - m Y ' s  (in ek-:::_7) ways), replace each of these 
k - i Y ' s  by A, and replace the remaining Y ' s  by C. We have constructed (7) (�-:::_7)2m-i 
words satisfying the conditions. Summing over i we have the left sum in ( 1 ) . 

Second count: in subsets according to the number j of B 's .  Start with the display (2) .  
Choose j of  the X's  (in (7) ways), and replace them by B 's .  Choose k of  the n - j 
remaining symbols (in (n�j) ways), replace them by A ' s .  Any remaining X ' s  or Y ' s  are 
now replaced by C 's .  We have constructed (;) (n�j) words satisfying the conditions. 
Summing over j we have the right sum in ( 1 ) .  
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Solution by II. G.R.A.20 Problem Solving Group, Rome, Italy. 
We consider the polynomial 

P (x) = (2 + x)k- 1 . ( 1  + x)n-(k- 1 ) 

= � (k � 1) 2(k- l )-ix i . 
n-
f l )  (n - (� - l ))xj . 

• =0 J =O J 

Then the coefficient of xk of P (x) is 

� (k --:- 1) 2<k- l )-i . (n - (� --:- 1 )) , 
i =O l k l 

which is the left side of the desired identity. 
On the other hand 

P (x) = ( 1  + ( 1  + x) )k- I 
· 

x
k 1 = -- + 1 · ( 1  + xt (1 + )n ( 1 )

k- 1  

( l + x) - l + x  
k- I (k - I) 1 k- 1  

(k - 1) = L · 
; · (I + xt = L . ( I  + xt-i 

i =O l ( l + x) i =O l 

Therefore the coefficient of xk of P (x) is 

which i s  the right side of the identity. 
Also solved by JPV Abad, Tsehaye Andeberhan, Michel Bataille (France), J. C. Binz (Switzerland), Robert 

Calcaterra, Chip Curtis, Knut Dale (Norway), Daniele Donini (Italy), Tom Leong, Peter W Lindstrom, Daniel A. 
Morales ( Venezuela), Jose H. Nieto ( Venezuela), Rob Pratt, Muneer Ahmad Rashid (Australia), Henry Ricardo, 
Edward Schmeichel, Chris Smith, Albert Stadler (Switzerland). Paul Weisenhorn (Germany), Chu Wenchang 
(Italy), Li Zhou, and the proposer. 

Answers 
Solutions to the Quickies from page 3 1 0. 

A963. Let 
a 1 az ak S = + + o o • + ---

a] + az az + a3 ak + a1 
Because all a j are positive and k � 3 ,  we have 

a 1 az ak s > ------- + ------- + . . .  + -------
a! + az + · · · + ak a1 + az + · · · + ak a 1 + az + · · · + ak 

If a1 = x ,  a2 = x2 , . . .  , ak = xk , then, with some simple computation, 

k - 1 xk- 1 s = -- + --:---
X +  1 xk- 1  + 1 

1 .  
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As x --+ oo, this expression approaches 1 .  Thus the infimum of the set of values of S 
is 1 .  

Next set 

Then S + S' = k, and by the the same argument as above, the infimum of S' is 1 .  Thus 
S < k - 1 ,  and the supremum of S is k - 1 .  Because S is continuous in the a j for 
a j > 0, it follows that the range of S is ( 1 ,  k - 1 ) .  

A964. Because SN � NN, i t  follows that card(SN) :;:: ��0 = c ,  the cardinality of R 
For the opposite inequality, let I:� 1 ak be a conditionally convergent series of real 
numbers. Given any r E JR., select a permutation rr, E SN with I:� 1 a1r, (k) = r .  The 
mapping from JR. to SN defined by r --+ rr, is injective, and it follows that card(lR) :;:: 
card(SN) .  

Proof Without Words: A Weighted Sum of Triangular Numbers 

Tn = 1 + 2 + 3 + · · · + n, n 2: 1 ::::} 

E.g., n = 4: 

n L k Tk+ l  = Trn+I - 1 · 
k= l  

-Roger B.  Nelson 
Lewis & Clark College 



R E V I E W S  

PAU L  J .  CAM P B E LL,  Editor 
Beloit  Co l lege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main­

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Stern, H.S . ,  In favor of a quantitative boycott of the Bowl Championship Series, Journal of 
Quantitative Analysis in Sports 2 ( l )  (2006), www . bepress . com/j qas/vol2/ i s s 1 /4/ . 

Another football season is under way. The Bowl Championship Series (BCS) is supposed to 
match the top two college teams in a championship game at the end of the season; it uses polls 
of coaches combined with computer ran kings designed by selected individuals .  Stern rejects the 
computer rankings as having no clear-cut objective (beyond merely "validating" the polls) and 
being deliberately crippled (they are not allowed to use game scores or locations). He advocates 
that quantitative analysts have nothing to do with the BCS. 

Diaconis,  Persi ,  Susan Holmes, and Richard Montgomery, Dynamical bias in the coin toss, 
www- stat . stanf ord . edu/ - susan/papers/headswithJ . pdf . 

This paper proves that "vigorously flipped coins are biased to come up the same way they 
started." ' with the bias parametrized by the angle between the normal to the coin and the angular 
momentum vector. The source of the bias is unavoidable wobbling (precession) of the coin. 
The authors also offer data (for U.S .  half-dollars-seen one lately?) that the bias is about .008 ± 
.00 I .  OK, but earlier they claim that their data show "a bias of at least .0 I ," and they confusingly 
conclude that "For tossed coins, the classical assumptions of independence with probability I /2 
are pretty solid." 

Ash, Avner, and Robert Gross, Fearless Symmetry: Exposing the Hidden Patterns of Numbers, 
Princeton University Press, 2006; xxix + 272 pp, $24.95. ISBN 0-69 1 - 1 2492-2. 

The subtitle is pure fluff, but few books are as ambitious as this one, and even fewer realize their 
ambitions as well. Recent years have seen an explosion of popularizations of mathematics, such 
as Symmetry and the Monster reviewed below. Where there is still a lack, due partly to the more 
limited audience, is in explanations of topics in advanced mathematics, featuring the research 
motivation and exploring connections and context, for those with enough background to bear 
with some notation, equations, and abstraction. This book's authors attempt to explain "cutting­
edge mathematics" mainly to an audience that has studied calculus (that subject is not used, just 
the "mathematical maturity" supposed to be attained thereby) . A claim to address readers "who 
have only studied some algebra" is misguided, except to open the door for bright high school 
students. The mathematics starts with groups and permutations in modern algebra and number 
theory, progresses through Galois theory and elliptic curves, investigates reciprocity laws, and 
culminates in an explanation of the proof of Fermat's Last Theorem. Those likely to benefit the 
most are mathematics majors and mathematicians (it would be great for a senior seminar) ; I 
could learn a lot by studying it carefully instead of just of just sampling it for this review. A 
useful feature (which more books should adopt) is a "Road Map" paragraph at the start of each 
chapter, which summarizes the purpose of the chapter and sets it in perspective. 
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VO L .  79, NO. 4, OCTO B E R  2 006 3 1 9  

Ronan, Mark, Symmetry and the Monster: One of the Greatest Quests of Mathematics, Oxford 
University Press, 2006; viii + 255 pp, $27. ISBN 0-1 9-280722-6. 

This book traces the classification of simple groups from Lagrange to Richard Borcherds win­
ning the Fields Medal in 1 998 for work on the "Monstrous" Lie algebra with its tantalizing 
connections to number theory, crystals, and string theory. The classification is presented as a 
search for the "atoms" of symmetry. The author is a mathematician who worked at the edges 
of the classification theorem; knew all of the principals in it; and cites exact dates, places, and 
incidents . The work reads briskly and holds interest; apart from the quadratic formula, there is 
only one equation, near the end, that involves variables . 

Packel, Edward, The Mathematics of Games and Gambling, 2nd ed. , MAA, 2006; xi + 1 75 pp, 
$44 (member: $35). ISBN 10: 0-88385-646-8 ; ISBN 1 3 :  978-0-88385-646-8. 

With gambling by students a growing phenomenon, and the likelihood increasing that my town 
will become host to an Indian casino, popular demand may lead me to teach a course from this 
fine book. It has been updated to reflect newly popular games (e.g. ,  video poker, Texas Hol­
dem) and expanded gambling opportunities (sports betting on the Internet) . Five of the seven 
chapters---Dn probability (roulette), dice games (backgammon, craps, chuck-a-luck), permuta­
tions/combinations (poker, bridge, Keno),  binomial distribution (blackjack), and game theory 
(bluffing)-have an even dozen exercises each, with answers or hints to about one-third of them. 
The only background needed is high school algebra. 

Fasano, Antonio, and Robert Natalini, Lost beauties of the Acropolis: What mathematics can 
say, SIAM News 39 (6) (July/August 2006) I ,  8. 7 .  

Air pollution vs .  marble monuments: "Mathematics can produce not only elegant theories,  but 
also very concrete answers," such as "cleaning" the marble too often is bad, and halving the 
damage would require reducing the sulfur dioxide in the air by a factor of four. 

Peterson, Ivars, Chaotic chomp: The mathematics of crystal growth sheds light on a tantalizing 
game, Science News 1 70 (4) (22 July 2006) 58-60. 

Classic games remain sources of inspiration for new mathematics .  Chomp, reinvented in the 
1 970s by David Gale, is the latest example. Two players take turns removing a cookie from an 
initially rectangular layout; all cookies above and to the right of it are removed, too. The loser 
is the player removes the last cookie. There is a winning strategy for the first player (convince 
yourself by contradiction and exchanging roles of the players) ;  but for nonsquare layouts with 
more than two columns, what cookie to take first is largely unknown. A new physics-based 
approach shows that the location of "winning" cookies and corresponding "losing" cookies can 
vary greatly with small changes in the size of the layout. Yet there are (broken) patterns, which 
resemble crystal growth processes and fractals .  Among the latest results by Adam S .  Landsberg 
(Claremont Colleges) and Eric J. Friedman (Cornell University), who apply re-normalization 
techniques from physics, is  that each 3 x n rectangle has a unique winning cookie. 

Messer, Robert, and Philip Straffin, Topology Now!, MAA, 2006; xi + 240 pp, $49.95 (member: 
$39.95). ISBN 0-88385-744-8. 

The exclamation point in the title emphasizes the authors ' view that undergraduate "students 
should see the exciting geometric ideas of topology now ( ! )  rather than later." Most mathe­
matics majors do not take topology, and most topology courses are mainly point-set topology, 
so the authors have a point-indeed, for most students, there isn ' t  any "later." This textbook 
emphasizes continuity, convergence, and connectedness, with applications to knots, manifolds, 
fixed-point theorems, and algebraic topology. It concludes with a chapter summarizing what 
most other topology texts focus on: metric spaces, topological spaces,  and compactness .  Rec­
ommended prerequisites are linear algebra, vector calculus, and one additional course in proof 
mathematics; no analysis or advanced calculus is  presupposed. [Disclosure : Author Phil Straffin 
is a close colleague of mine at Beloit.] 



N E W S  A N D L E T T E R S 

Car l  B .  A l l endoerfer Awards - 2 006 
The Carl B .  Allendoerfer Awards, established i n  1 976, are made to authors of exposi­
tory articles published in M ATHEMATICS MAGAZINE. The Awards are named for Carl 
B .  Allendoerfer, a distinguished mathematician at the University of Washington and 
President of the Mathematical Association of America, 1 959-60. 

Jeff Suzuki. The lost calculus ( 1 637-1 670) : tangency and optimization without limits, 
MATH EMATICS MAGAZINE, 78 (2005) 339-353 .  

Citation Every teacher of  calculus knows that the need to  understand and work with 
limits is what makes the definition of the derivative hard. Hence we are not surprised 
when historians tell us that there was much controversy with the original notions of the 
derivative and that it took several generations of mathematicians to get the meaning 
and definition of limits right. But the non-historians among us tend not to be aware 
of the competing definitions of the derivative that were developed in the seventeenth 
century. 

Suzuki 's  paper takes the reader on a pleasant ride through this little known history, 
and presents an "alternative universe" in which many of the problems encountered by 
a calculus student can be solved using an approach that does not need limits . 

In his 1 637 book La Geometrie, Descartes gives an algebraic method for finding 
tangents to algebraic functions.  To find a tangent to a curve at the point P , we first find 
the equation of a circle tangent to the curve at the point. Then the wanted tangent will 
be the line through P perpendicular to the radius of the circle. The problem of finding 
the equation of the circle is reduced to making sure that an algebraic expression has 
a double root. The work of Jan Hudde ( 1 628-1704) who developed an algorithm for 
detecting double roots gives this method an important boost. 

Using well-chosen examples, Suzuki brings the calculus of Descartes, Hudde, Wal­
lis, and Barrow back to life. He shows us interesting mathematics-with historical 
import-that can be appreciated by students and teachers of calculus. 

Biographical Note Jeff Suzuki, Associate Professor of Mathematics at Brooklyn 
College, grew up in southern California unable to decide what he really wanted to 
do, so he studied mathematics, science, and history, eventually earning his Bachelor's 
in mathematics (with a physics concentration) and history from CSU Fullerton. He 
went on to earn his M.A. and Ph.D. from Boston University with a dissertation on the 
history of the Lagrange-Laplace proof of the long-term stability of the solar system. He 
enjoys trying new things, and introducing them to his children William Z and Dorothy 
X Suzuki-Burke (yes, their middle names are "Z" and "X"), and his wife Jacqui, who 
are frequently subjected to his culinary, musical, and linguistic efforts. As a historian 
of mathematics he is especially interested in the eighteenth century. 

Response from Jeff Suzuki I am deeply honored to receive an Allendoerfer Prize 
for "The Lost Calculus ." Just being able to bring to life an interesting episode in the 
history of mathematics is a great joy, and the added excitement of being nominated for 
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this prize, not to mention actually winning, is immense. I 'd like to thank Frank Farris 
for all his editorial work and patience, as well as Jacqui and the kids for putting up 
with my idiosyncratic writing and researching habits . 

Robb T. Koether and John K. Osoinach Jr. Outwitting the lying oracle, MATHE­
MATICS  MAGAZINE, 78 (2005) 98- 1 09. 

Citation A coin is flipped n times, and, each time, you first wager a certain amount 
and then try to predict the outcome. If you are wrong you lose your money and if 
you are right your money is doubled. Enter the oracle, and the game becomes much 
more enticing. Each time, after you announce your wager but before you make the 
prediction, the oracle will tell you how the coin is going to land. The twist is that the 
oracle may lie up to k times. What should your strategy be? 

Koether and Osoinach draw the reader in with the case n = 3 and k = 1 , use 
elementary probability and game theory to investigate the more general case, and 
then present variants of the problem that entice readers to do investigations of their 
own. This delightful article is well-written, interesting, and accessible. The "Oracle" 
metaphor is woven throughout seamlessly, and, before the reader's  interest wanes,  the 
authors throw in a variant, a question, or a concrete example. Students will find the 
article readable and fun.  

Biographical Note Robb T.  Koether is a professor of mathematics and computer 
science at Hampden-Sydney College in Virginia, where he has taught for the past 25 
years . He earned his bachelor's  degree in mathematics at the University of Richmond 
in 1 973 and his Ph.D. in algebra at the University of Oklahoma in 1 978 under the 
direction of Bernard R. McDonald. At Hampden-Sydney College Robb enjoys the op­
portunity to teach in many different areas of mathematics as well as computer science. 
He also enjoys solving mathematical contest problems and other puzzles, one of which 
led to the paper "Outwitting the Lying Oracle," for which this award was given. Out­
side of teaching and mathematics, he enjoys many outdoor activities, including cy­
cling, camping, and backpacking on the Appalachian Trail .  He is active in a number 
of community organizations, including the local Boy Scout troop and his church. 

Response from Robb Koether I am greatly honored and humbled to be awarded 
the Allendoerfer prize. I would like to thank first my co-author John Osoinach, with 
whom it was a delight to work. It was largely through his enthusiasm that we pursued 
the ideas that developed into our paper "Outwitting the Lying Oracle." I would also 
like to thank Frank Farris and the anonymous reviewers who made many helpful and 
necessary comments on ways to improve our work. Finally I would like to thank my 
many graduate school professors who impressed on me, each in his own way, the im­
portance of writing exactly what you mean to say. If winning the Allendoerfer prize is 
a measure of our success at communicating our enthusiasm for mathematics to others, 
then we are deeply gratified. 

Biographical Note John K. Osoinach, Jr. earned his Ph.D. in 1 998 at the University 
of Texas at Austin under the supervision of Dr. John Luecke. Immediately afterwards, 
he taught at Eureka College until 2000, when he married and moved to Virginia to 
take a position at Hampden-Sydney College. While his main area of research is in 
low-dimensional topology, specifically the geometry and topology of 3-manifolds, his 
work at small, liberal arts colleges has expanded his range of mathematical curiosity. 
In addition to his own research, John has supervised several undergraduates in research 
projects ranging from topology to the mathematics of social choice. He will begin a 
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new position in the fall of 2006 as an Assistant Professor of Mathematics at Millsaps 
College. 

Response from John Osoinach I am honored and deeply humbled in receiving the 
Carl B .  Allendoerfer Award. As an undergraduate at Vanderbilt University I was given 
a subscription to Mathematics Magazine, and I have always read the articles with keen 
interest. Many of the ideas in the article originated from an undergraduate contest our 
department at Hampden-Sydney College sponsored, which itself was intended to spark 
curiosity among our majors. I am gratified and excited that this article might continue 
to inspire undergraduates to explore their own ideas in mathematics, so that they too 
might learn the joys of mathematical discovery. I would like to thank Bud Brown for 
his reading of the manuscript and his advice in submitting it to the Magazine, and 
Frank Farris for his numerous helpful comments . Finally, many thanks go to Robb 
Koether for his shared excitement and enthusiasm in writing the article. 
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and create music. The book explores the math re lated to aspects 
of music from its acoustical bases to composit ional techn iques to 
music crit ic ism.  

The mathematics i nvolved ranges over areas from probabi l ity 
theory to Fou rier series to group theory. The book also re lates 
some cautionary tales of misgu ided attempts to mix music and 
math . An accompanying audio C D  i l l ustrates many of the musical 
examples that the book d i scusses. 
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New from the Mathematical Association of America 

aha! 
A Two-volume collectio11 

aha! il1sight a11d aha! Gotcha 
l\larti11 Gard11er 

aha!  Gotcha and aha ! Ins ight are here combi ned 

as a s i n g l e  vol u me .  The aha ! books, as they are 
refe rred to by fans of the author Mart i n Gardner, 

conta in  1 44 wonderfu l  puzzles f rom the re i g n i n g  

k i n g  o f  recreat ional  mathematics.  I n  t h i s  com bi ned 
vol u me,  you wi l l  f ind puzzles ran g i n g  ove r 
geom etry, logic ,  p robabi l ity, statistics, n u m ber, 
t i m e ,  combinatorics, and wo rd p lay. Gardner  cal ls 
these puzzles aha! p roblems.  He explains that 

aha! p roblems "seem d iff icu l t ,  and i ndeed are 

d iff icu l t  if you go about try i ng to solve them i n  trad it ional  ways. But if you 

can free you r  m i n d  from standard p robl em solvi ng tech n iques,  you may 
be receptive to an aha!  react ion that leads i m mediately to a solution . 

Don't be d i sco u raged if, at f i rst , you have diff icu lty with these p roblems.  
Try you r  best to solve each one befo re you read the answe r. After a whi le  
you wi l l  beg i n  to catch the sp i rit of  offbeat , non l i near th i n k i n g ,  and you 
may be su rpr ised to f i nd  you r  aha!  abi l ity i m p rovi ng . "  

Stud ies show that persons who possess a h i g h  aha!  ab i l ity are a l l  

i nte l l igent to a moderate leve l ,  but  beyond that l evel there seems to  be no 
corre lat ion between h ig h  inte l l igence and aha! th i n ki n g .  So d ig i nto some 

of the p uzzles i n  th is  book,  and p repare you rself fo r an aha! expe rience. 
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From the Mathem at i ca l Assoc i at i o n  of Amer i ca � 

Marti n Gardner's Mathematical Games 
The enti re collection of his Scientific American columns on 1 CD 
" I t's an absolute orgy of inte l lectual p lay. I can't th i n k  of a better 
present for a c l ever 1 2-year-old,  bored underg raduate, rest l ess 
reti ree,  or  stay-at-home parent fea ring i ntel lectual  stag natio n ."-­
Dave Brooks, The Nashua Telegraph 
M a rt in G a rd n e r's "Mathematical  Games" co l u m n  ran i n  Scientific 
American from 1 956 to 1 986.  I n  these col u mns Gardner  introduced 
hundreds of thousands of readers to the del ights of mathematics and of 
puzzles and p roblem solvi n g .  His col u m n  b roke such stories as Rivest, 
Shamir  and Adelman on publ ic-key cryptog raphy, Mandelbrot on 
fractals ,  Conway o n  Life, and Pen rose on t i l ings. He enl ivened classic 

�illdnt� geometry and n u m ber theory and i ntroduced readers to new areas �-·- such as combinatorics and g raph theo ry. 

Now, th is material  has been brought together on one,  searchable C D. 

Martin Gardner is the author of more than 65 books and countless art ic les,  rang ing ove r science, 
mathematics, p h i l osophy, l iterature,  and conjur ing .  H e  has insp i red and e n l i g htened generations with 
the del ights of mathematical recreat ions,  the amaz ing phenomena of numbers, magic,  puzzles, and 
the play of ideas. He is  our premier  writer on recreational mathematics, a great popularize r  of science 
and a debunker of pseudoscience. 

The CD conta i ns the fol lowi ng books: 
1 . Hexaflexagons and Other Mathematical D ive rs ions 
2 .  T h e  Second Scientific American B o o k  o f  Mathematical Puzzles and D iversions 
3 .  New Mathematical Diversions 
4 .  T h e  U nexpected H a n g i n g  and Other Mathematical D iversions 
5. Mart in Gard n e r's 6th Book of Mathematical D iversions from Scientific American 
6.  Mathematical Carnival 
7. Mathematical Magic Show 
8.  Mathematical C i rcus 
9.  The Magic N u m bers of D r. Matr ix 
1 0 . Wheels,  Life ,  and Other Mathematical Amusements 
1 1 .  Knotted Doughnuts and Other  Mathematical Enterta iners 
1 2. Time Travel and Other Mathematical Bewi lderments 
1 3. Pen rose T i les to Trapdoor Ciphers 
1 4 . Fractal M usic,  Hypercards, and more Mathematical Recreat ions from Scientific American 
1 5 . The Last Recreations :  Hydras, Eggs, and Oth e r  Mathematical Myst if ications. 

System Requirements 

The Windows version of Acrobat 6.0. 1 is included on this CD. If Autorun is enabled on 
your Windows computer (default) the CD wil l  launch automatically using the copy of 
Acrobat Reader on the CD. You do not need to instal l  Acrobat Reader on your computer. 
Macintosh users MUST instal l  Reader on their computer to use this C D. The installer for 
Apple Macintosh Reader version 6.0. 1 is included on the CD. 

Windows 
I ntel® Pentium® processor :  Microsoft® Windows 98 (2nd Ed) , Windows Mi l lennium, 
Windows NT 4.0 (Service Pack 6) , Windows 2000 (Service Pack 2),  Windows XP 
1 28MB of RAM 
60MB of avai lable hard-disk space ( if  you instal l  Reader) 

Macintosh 
PowerPC G3 processor: Mac OS X v. 1 0.2.2-1 0 .3  
1 28MB of  RAM with virtual memory on 
70MB of available hard-disk space (for Reader) 

Spectrum • Catalog Code: TOG • On C D - ROM , 2005 • I S B N :  0-88385-545-3 
List Price: $55.95 • MAA Member P r ice: $44.95 
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